Universidad Autónoma de Madrid (Spain).
Span J Psychol. 2020 Nov 12;23:e46. doi: 10.1017/SJP.2020.48.
Although modern lines for dealing with missing data are well established from the 1970s, today there is a challenge when researchers encounter this problem in multilevel models. First, there is a variety of existing software to handle missing data based on multiple imputation (MI), currently pointed out by experts as the most promising strategy. Second, the two principal paradigms of MI are joint modelling (JM) and fully conditional specification (FCS), one more complication because they are not equally useful depending on the combination of multilevel model and the estimated parameters affected by missing data. Technical literature do not contribute to ease the number of decisions that researcher has to do. Given these inconveniences, the present paper has three objectives. (1) To present a thorough revision of the most recently developed software and functions about multiple imputation in multilevel models. (2) We derive a set of suggestions, recommendations, and guides for helping researchers to handle missing data. We list a number of key questions to consider when analyzing multilevel models. (3) Finally, based on the previous relevant questions, we present two detailed examples using the recommended R packages to be easy for the researcher applying multiple imputation in multilevel models.
尽管从 20 世纪 70 年代开始就已经确立了处理缺失数据的现代方法,但当研究人员在多层次模型中遇到这个问题时,今天仍然存在挑战。首先,目前专家指出,有多种基于多重插补(MI)的现有软件可用于处理缺失数据,这是最有前途的策略。其次,MI 的两个主要范式是联合建模(JM)和完全条件规范(FCS),因为它们根据多层次模型和受缺失数据影响的估计参数的组合,并非同等有用,因此更加复杂。技术文献并没有帮助研究人员减轻必须做出的决策数量。鉴于这些不便,本文有三个目标。(1)对多层次模型中最新开发的关于多重插补的软件和功能进行全面审查。(2)我们提出了一系列建议、指南,以帮助研究人员处理缺失数据。我们列出了在分析多层次模型时需要考虑的一些关键问题。(3)最后,基于之前的相关问题,我们使用推荐的 R 包提供了两个详细示例,以方便研究人员在多层次模型中应用多重插补。