Suppr超能文献

复制缺口是 BRCA 缺陷和治疗反应的基础。

Replication Gaps Underlie BRCA Deficiency and Therapy Response.

机构信息

University of Massachusetts Medical School, Worcester, Massachusetts.

Fox Chase Cancer Center, Philadelphia, Pennsylvania.

出版信息

Cancer Res. 2021 Mar 1;81(5):1388-1397. doi: 10.1158/0008-5472.CAN-20-1602. Epub 2020 Nov 12.

Abstract

Defects in DNA repair and the protection of stalled DNA replication forks are thought to underlie the chemosensitivity of tumors deficient in the hereditary breast cancer genes and (BRCA). Challenging this assumption are recent findings that indicate chemotherapies, such as cisplatin used to treat BRCA-deficient tumors, do not initially cause DNA double-strand breaks (DSB). Here, we show that ssDNA replication gaps underlie the hypersensitivity of BRCA-deficient cancer and that defects in homologous recombination (HR) or fork protection (FP) do not. In BRCA-deficient cells, ssDNA gaps developed because replication was not effectively restrained in response to stress. Gap suppression by either restoration of fork restraint or gap filling conferred therapy resistance in tissue culture and BRCA patient tumors. In contrast, restored FP and HR could be uncoupled from therapy resistance when gaps were present. Moreover, DSBs were not detected after therapy when apoptosis was inhibited, supporting a framework in which DSBs are not directly induced by genotoxic agents, but rather are induced from cell death nucleases and are not fundamental to the mechanism of action of genotoxic agents. Together, these data indicate that ssDNA replication gaps underlie the BRCA cancer phenotype, "BRCAness," and we propose they are fundamental to the mechanism of action of genotoxic chemotherapies. SIGNIFICANCE: This study suggests that ssDNA replication gaps are fundamental to the toxicity of genotoxic agents and underlie the BRCA-cancer phenotype "BRCAness," yielding promising biomarkers, targets, and opportunities to resensitize refractory disease..

摘要

DNA 修复缺陷和停滞的 DNA 复制叉的保护被认为是遗传性乳腺癌基因 和 (BRCA)缺陷肿瘤对化学疗法敏感的基础。最近的研究结果对这一假设提出了挑战,这些结果表明,用于治疗 BRCA 缺陷肿瘤的顺铂等化疗药物最初并不会导致 DNA 双链断裂(DSB)。在这里,我们表明,ssDNA 复制缺口是 BRCA 缺陷癌症敏感性的基础,同源重组(HR)或叉保护(FP)缺陷不是。在 BRCA 缺陷细胞中,由于复制没有有效地受到应激的限制,因此形成了 ssDNA 缺口。通过恢复叉限制或缺口填充来抑制缺口会在组织培养和 BRCA 患者肿瘤中赋予治疗抵抗性。相比之下,当存在缺口时,可以将恢复的 FP 和 HR 与治疗抵抗性解耦。此外,当抑制细胞凋亡时,在治疗后未检测到 DSB,这支持了这样一种框架,即 DSB 不是直接由遗传毒性剂诱导的,而是由细胞死亡核酸酶诱导的,并且不是遗传毒性剂作用机制的基础。总之,这些数据表明,ssDNA 复制缺口是 BRCA 癌症表型“BRCAness”的基础,我们提出它们是遗传毒性化学疗法毒性的基础。意义:这项研究表明,ssDNA 复制缺口是遗传毒性剂毒性的基础,是 BRCA 癌症表型“BRCAness”的基础,为有希望的生物标志物、靶标和重新敏化难治性疾病提供了机会。

相似文献

1
Replication Gaps Underlie BRCA Deficiency and Therapy Response.
Cancer Res. 2021 Mar 1;81(5):1388-1397. doi: 10.1158/0008-5472.CAN-20-1602. Epub 2020 Nov 12.
2
Revisiting the BRCA-pathway through the lens of replication gap suppression: "Gaps determine therapy response in BRCA mutant cancer".
DNA Repair (Amst). 2021 Nov;107:103209. doi: 10.1016/j.dnarep.2021.103209. Epub 2021 Aug 13.
3
BRCA1 controls homologous recombination at Tus/Ter-stalled mammalian replication forks.
Nature. 2014 Jun 26;510(7506):556-9. doi: 10.1038/nature13295. Epub 2014 Apr 28.
4
Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency.
Mol Cell. 2021 Aug 5;81(15):3128-3144.e7. doi: 10.1016/j.molcel.2021.06.011. Epub 2021 Jul 2.
5
Therapeutic exploitation of tumor cell defects in homologous recombination.
Anticancer Agents Med Chem. 2008 May;8(4):448-60. doi: 10.2174/187152008784220267.
6
(Single-stranded DNA) gaps in understanding BRCAness.
Trends Genet. 2024 Sep;40(9):757-771. doi: 10.1016/j.tig.2024.04.013. Epub 2024 May 23.
7
Gap resection matters in BRCA mutant cancer.
Genes Dev. 2025 May 2;39(9-10):539-540. doi: 10.1101/gad.352827.125.
8
The cell cycle effects of PARP inhibitors underlie their selectivity toward BRCA1/2-deficient cells.
Genes Dev. 2021 Sep 1;35(17-18):1271-1289. doi: 10.1101/gad.348479.121. Epub 2021 Aug 12.
9
Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks.
DNA Repair (Amst). 2007 Jul 1;6(7):1018-31. doi: 10.1016/j.dnarep.2007.02.020. Epub 2007 Mar 26.
10
Exploiting replication gaps for cancer therapy.
Mol Cell. 2022 Jul 7;82(13):2363-2369. doi: 10.1016/j.molcel.2022.04.023. Epub 2022 May 13.

引用本文的文献

2
PARP1 and PARP2 are dispensable for DNA repair by microhomology-mediated end-joining during mitosis.
bioRxiv. 2025 Jun 9:2025.06.09.658719. doi: 10.1101/2025.06.09.658719.
4
5hmC enhances PARP trapping and restores PARP inhibitor sensitivity in chemoresistant BRCA1/2-deficient cells.
J Biol Chem. 2025 Jul;301(7):110393. doi: 10.1016/j.jbc.2025.110393. Epub 2025 Jun 19.
5
Replication stress responses in human lymphocytes change sex-specifically during aging.
Nucleic Acids Res. 2025 Jun 6;53(11). doi: 10.1093/nar/gkaf498.
6
DNA repair and the contribution to chemotherapy resistance.
Genome Med. 2025 May 26;17(1):62. doi: 10.1186/s13073-025-01488-8.
7
Human TLS DNA polymerase: saviors or threats under replication stress?
Mol Cell Biochem. 2025 May 23. doi: 10.1007/s11010-025-05291-2.
8
Phospho-RPA2 predicts response to platinum and PARP inhibitors in homologous recombination-proficient ovarian cancer.
J Clin Invest. 2025 May 20;135(13). doi: 10.1172/JCI189511. eCollection 2025 Jul 1.
9
Targeting DNA damage sensors for cancer therapy.
DNA Repair (Amst). 2025 May;149:103841. doi: 10.1016/j.dnarep.2025.103841. Epub 2025 May 2.
10
Gap resection matters in BRCA mutant cancer.
Genes Dev. 2025 May 2;39(9-10):539-540. doi: 10.1101/gad.352827.125.

本文引用的文献

1
Inhibition of the translesion synthesis polymerase REV1 exploits replication gaps as a cancer vulnerability.
Sci Adv. 2020 Jun 10;6(24):eaaz7808. doi: 10.1126/sciadv.aaz7808. eCollection 2020 Jun.
4
Role of Y-family translesion DNA polymerases in replication stress: Implications for new cancer therapeutic targets.
DNA Repair (Amst). 2019 Jun;78:20-26. doi: 10.1016/j.dnarep.2019.03.016. Epub 2019 Mar 29.
5
Genetic Screens Reveal FEN1 and APEX2 as BRCA2 Synthetic Lethal Targets.
Mol Cell. 2019 Mar 7;73(5):885-899.e6. doi: 10.1016/j.molcel.2018.12.008. Epub 2019 Jan 24.
6
Radiosensitivity Is an Acquired Vulnerability of PARPi-Resistant BRCA1-Deficient Tumors.
Cancer Res. 2019 Feb 1;79(3):452-460. doi: 10.1158/0008-5472.CAN-18-2077. Epub 2018 Dec 10.
9
RADX Modulates RAD51 Activity to Control Replication Fork Protection.
Cell Rep. 2018 Jul 17;24(3):538-545. doi: 10.1016/j.celrep.2018.06.061.
10
CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions.
Nature. 2018 Jul;559(7713):285-289. doi: 10.1038/s41586-018-0291-z. Epub 2018 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验