Suppr超能文献

穿戴式传感器可为黑色素瘤幸存者实时提供紫外线暴露信息,并通过每日发送带有结构化目标设定的短信,帮助减少阳光暴露。

Sun exposure reduction by melanoma survivors with wearable sensor providing real-time UV exposure and daily text messages with structured goal setting.

机构信息

Department of Dermatology, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Suite 1050, Chicago, IL, 60611, USA.

Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.

出版信息

Arch Dermatol Res. 2021 Oct;313(8):685-694. doi: 10.1007/s00403-020-02163-1. Epub 2020 Nov 13.

Abstract

Despite knowledge of subsequent melanoma risk and the benefit of sun protection in risk reduction, melanoma survivors often do not engage in adequate sun protection and continue to sunburn at rates similar to individuals without a history of skin cancer. This novel intensive intervention provided a wearable UV sensor delivering real-time UV exposure with a smartphone and daily text messages. On days 1-10 (period 1), behavioral facilitation and outcome expectancies messages were provided. On day 10, participants reviewed and reflected on their daily UV exposure on the previous 10 days and set goals for improving sun protection. Then on days 11-21 (period 2) self-efficacy and self-regulation messages were provided. Sixty melanoma survivors were randomized (1:1) to receive structured or unstructured goal setting queries on day 10. Controlling for cloudy/rain conditions with less UV due to weather, there was a time effect with a significant decrease in UV exposure from periods 1-2 [period 1-2, F (59) = 22.60, p < 0.0001]. In this short-term study, melanoma survivors managed their daily UV exposure to stay below their maximum tolerated UV dose. ClinicalTrials.gov Protocol Record NCT0334796, date of registration Nov 15, 2017.

摘要

尽管了解随后的黑色素瘤风险以及通过防晒降低风险的益处,但黑色素瘤幸存者通常仍未采取足够的防晒措施,晒伤率仍与无皮肤癌病史的个体相似。本新型强化干预措施提供了一种可穿戴式紫外线传感器,通过智能手机和每日短信提供实时紫外线暴露情况。在第 1 天至第 10 天(第 1 期),提供行为促进和预期结果信息。在第 10 天,参与者回顾并反思过去 10 天的每日紫外线暴露情况,并设定改善防晒措施的目标。然后在第 11 天至第 21 天(第 2 期),提供自我效能和自我调节信息。60 名黑色素瘤幸存者随机(1:1)接受第 10 天结构化或非结构化目标设定查询。在控制因天气原因紫外线较少的多云/雨天条件后,紫外线暴露从第 1 期到第 2 期呈时间效应,显著下降[第 1 期到第 2 期,F (59) = 22.60,p < 0.0001]。在这项短期研究中,黑色素瘤幸存者管理其每日紫外线暴露量,使其保持在可耐受的最大紫外线剂量以下。ClinicalTrials.gov 方案记录 NCT0334796,注册日期 2017 年 11 月 15 日。

相似文献

2
Protection-adjusted UV dose estimated for body areas: Daily self-reported sun protection modification of wearable UV sensor dose.
Photodermatol Photoimmunol Photomed. 2020 Sep;36(5):357-364. doi: 10.1111/phpp.12557. Epub 2020 Apr 28.
5
A UVR-sensor wearable device intervention to reduce sun exposure in melanoma survivors: Results from a randomized controlled trial.
PLoS One. 2023 Feb 10;18(2):e0281480. doi: 10.1371/journal.pone.0281480. eCollection 2023.
7
Assessing recall of personal sun exposure by integrating UV dosimeter and self-reported data with a network flow framework.
PLoS One. 2019 Dec 4;14(12):e0225371. doi: 10.1371/journal.pone.0225371. eCollection 2019.
8
Sun Exposure and Protection Behaviors among Long-term Melanoma Survivors and Population Controls.
Cancer Epidemiol Biomarkers Prev. 2017 Apr;26(4):607-613. doi: 10.1158/1055-9965.EPI-16-0854. Epub 2017 Mar 2.

引用本文的文献

1
Digital Phenotyping in Health Using Machine Learning Approaches: Scoping Review.
JMIR Bioinform Biotechnol. 2022 Jul 18;3(1):e39618. doi: 10.2196/39618.
2
Primary Cutaneous Melanoma-Management in 2024.
J Clin Med. 2024 Mar 11;13(6):1607. doi: 10.3390/jcm13061607.
3
Stratospheric ozone, UV radiation, and climate interactions.
Photochem Photobiol Sci. 2023 May;22(5):937-989. doi: 10.1007/s43630-023-00371-y. Epub 2023 Apr 21.
4
Objectively-Assessed Ultraviolet Radiation Exposure and Sunburn Occurrence.
Int J Environ Res Public Health. 2023 Mar 23;20(7):5234. doi: 10.3390/ijerph20075234.
5
6
3D Printed Skin-Interfaced UV-Visible Hybrid Photodetectors.
Adv Sci (Weinh). 2022 Sep;9(25):e2201275. doi: 10.1002/advs.202201275. Epub 2022 Jul 11.
7
Etiologies of Melanoma Development and Prevention Measures: A Review of the Current Evidence.
Cancers (Basel). 2021 Sep 30;13(19):4914. doi: 10.3390/cancers13194914.

本文引用的文献

1
Protection-adjusted UV dose estimated for body areas: Daily self-reported sun protection modification of wearable UV sensor dose.
Photodermatol Photoimmunol Photomed. 2020 Sep;36(5):357-364. doi: 10.1111/phpp.12557. Epub 2020 Apr 28.
2
Toward a precision behavioral medicine approach to addressing high-risk sun exposure: a qualitative analysis.
JAMIA Open. 2019 Sep 16;2(4):547-553. doi: 10.1093/jamiaopen/ooz034. eCollection 2019 Dec.
5
Roles of UVA radiation and DNA damage responses in melanoma pathogenesis.
Environ Mol Mutagen. 2018 Jun;59(5):438-460. doi: 10.1002/em.22176. Epub 2018 Feb 21.
6
Sun Exposure and Protection Behaviors among Long-term Melanoma Survivors and Population Controls.
Cancer Epidemiol Biomarkers Prev. 2017 Apr;26(4):607-613. doi: 10.1158/1055-9965.EPI-16-0854. Epub 2017 Mar 2.
7
UVA-Irradiation Induces Melanoma Invasion via the Enhanced Warburg Effect.
J Invest Dermatol. 2016 Sep;136(9):1866-1875. doi: 10.1016/j.jid.2016.02.815. Epub 2016 May 13.
8
Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults.
JAMA Intern Med. 2016 Jun 1;176(6):816-25. doi: 10.1001/jamainternmed.2016.1548.
10
The Growing Burden of Invasive Melanoma: Projections of Incidence Rates and Numbers of New Cases in Six Susceptible Populations through 2031.
J Invest Dermatol. 2016 Jun;136(6):1161-1171. doi: 10.1016/j.jid.2016.01.035. Epub 2016 Feb 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验