Suppr超能文献

在水介质中聚合诱导自组装过程中,两个空间稳定剂嵌段之间的焓不相容性可控制囊泡的尺寸分布。

Enthalpic incompatibility between two steric stabilizer blocks provides control over the vesicle size distribution during polymerization-induced self-assembly in aqueous media.

作者信息

Beattie Deborah L, Mykhaylyk Oleksandr O, Armes Steven P

机构信息

Department of Chemistry , University of Sheffield , Dainton Building, Brook Hill , Sheffield , South Yorkshire, S3 7HF , UK . Email:

出版信息

Chem Sci. 2020 Jun 29;11(39):10821-10834. doi: 10.1039/d0sc01320j. eCollection 2020 Oct 21.

Abstract

Over the past two decades, block copolymer vesicles have been widely used by many research groups to encapsulate small molecule drugs, genetic material, nanoparticles or enzymes. They have also been used to design examples of autonomous self-propelled nanoparticles. Traditionally, such vesicles are prepared post-polymerization processing using a water-miscible co-solvent such as DMF or THF. However, such protocols are invariably conducted in dilute solution, which is a significant disadvantage. In addition, the vesicle size distribution is often quite broad, whereas aqueous dispersions of relatively small vesicles with narrow size distributions are highly desirable for potential biomedical applications. Alternatively, concentrated dispersions of block copolymer vesicles can be directly prepared polymerization-induced self-assembly (PISA). Moreover, using a binary mixture of a relatively long and a relatively short steric stabilizer block enables the convenient PISA synthesis of relatively small vesicles with reasonably narrow size distributions in alcoholic media (C. Gonzato , , 2014, , 11100-11106). Unfortunately, this approach has not yet been demonstrated for aqueous media, which would be much more attractive for commercial applications. Herein we show that this important technical objective can be achieved by judicious use of two chemically distinct, enthalpically incompatible steric stabilizer blocks, which ensures the desired microphase separation across the vesicle membrane. This leads to the formation of well-defined vesicles of around 200 nm diameter (size polydispersity = 13-16%) in aqueous media at 10% w/w solids as judged by transmission electron microscopy, dynamic light scattering and small-angle X-ray scattering.

摘要

在过去二十年中,许多研究小组广泛使用嵌段共聚物囊泡来封装小分子药物、遗传物质、纳米颗粒或酶。它们还被用于设计自主自推进纳米颗粒的实例。传统上,此类囊泡是在聚合后处理过程中使用与水混溶的共溶剂(如DMF或THF)制备的。然而,此类方案总是在稀溶液中进行,这是一个重大缺点。此外,囊泡尺寸分布通常相当宽,而具有窄尺寸分布的相对较小囊泡的水分散体对于潜在的生物医学应用非常理想。或者,可以通过聚合诱导自组装(PISA)直接制备嵌段共聚物囊泡的浓缩分散体。此外,使用相对长和相对短的空间稳定剂嵌段的二元混合物能够在醇介质中方便地通过PISA合成具有合理窄尺寸分布的相对较小囊泡(C. Gonzato , ,2014, ,11100 - 11106)。不幸的是,这种方法尚未在水性介质中得到证明,而水性介质对于商业应用更具吸引力。在此我们表明,通过明智地使用两个化学性质不同、焓不相容的空间稳定剂嵌段可以实现这一重要技术目标,这确保了跨囊泡膜的所需微相分离。通过透射电子显微镜、动态光散射和小角X射线散射判断,这导致在水性介质中以10% w/w固体含量形成直径约200 nm(尺寸多分散性 = 13 - 16%)的明确囊泡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cf2f/7654191/1297425889b8/d0sc01320j-s1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验