Department of Internal Medicine, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan.
Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
Microbiome. 2020 Nov 19;8(1):162. doi: 10.1186/s40168-020-00912-y.
The capability of gut microbiota in degrading foods and drugs administered orally can result in diversified efficacies and toxicity interpersonally and cause significant impact on human health. Production of atherogenic trimethylamine N-oxide (TMAO) from carnitine is a gut microbiota-directed pathway and varies widely among individuals. Here, we demonstrated a personalized TMAO formation and carnitine bioavailability from carnitine supplements by differentiating individual TMAO productivities with a recently developed oral carnitine challenge test (OCCT). By exploring gut microbiome in subjects characterized by TMAO producer phenotypes, we identified 39 operational taxonomy units that were highly correlated to TMAO productivity, including Emergencia timonensis, which has been recently discovered to convert γ-butyrobetaine to TMA in vitro. A microbiome-based random forest classifier was therefore constructed to predict the TMAO producer phenotype (AUROC = 0.81) which was then validated with an external cohort (AUROC = 0.80). A novel bacterium called Ihubacter massiliensis was also discovered to be a key microbe for TMA/TMAO production by using an OCCT-based humanized gnotobiotic mice model. Simply combining the presence of E. timonensis and I. massiliensis could account for 43% of high TMAO producers with 97% specificity. Collectively, this human gut microbiota phenotype-directed approach offers potential for developing precision medicine and provides insights into translational research. Video Abstract.
肠道微生物群对口服给予的食物和药物的降解能力可导致人与人之间疗效和毒性的多样化,并对人类健康产生重大影响。肉碱产生的致动脉粥样硬化的三甲胺 N-氧化物(TMAO)是一种肠道微生物群导向的途径,个体之间差异很大。在这里,我们通过最近开发的口服肉碱挑战测试(OCCT)来区分个体 TMAO 生产力,从而证明了个体肉碱补充剂的个性化 TMAO 形成和肉碱生物利用度。通过探索具有 TMAO 产生表型特征的受试者中的肠道微生物组,我们确定了 39 个与 TMAO 生产力高度相关的操作分类单元,包括Emergencia timonensis,它最近在体外被发现将γ-丁氧基甜菜碱转化为 TMA。因此,构建了一个基于微生物组的随机森林分类器来预测 TMAO 产生表型(AUROC=0.81),并使用外部队列进行了验证(AUROC=0.80)。还发现了一种新型细菌称为 Ihubacter massiliensis,它通过使用基于 OCCT 的人源化无菌小鼠模型是 TMA/TMAO 产生的关键微生物。简单地结合 E. timonensis 和 I. massiliensis 的存在可以解释 43%的高 TMAO 产生者,特异性为 97%。总的来说,这种基于人类肠道微生物群表型的方法为开发精准医学提供了潜力,并为转化研究提供了新的见解。视频摘要。