Suppr超能文献

利用 fMRI 任务中对线索的反应对年轻男性网络成瘾障碍进行神经分类和预测治疗反应。

Neural classification of internet gaming disorder and prediction of treatment response using a cue-reactivity fMRI task in young men.

机构信息

State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.

Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, Connecticut Mental Health Center, New Haven, Connecticut Council on Problem Gambling, Wethersfield, CT, USA.

出版信息

J Psychiatr Res. 2022 Jan;145:309-316. doi: 10.1016/j.jpsychires.2020.11.014. Epub 2020 Nov 7.

Abstract

BACKGROUND

Neural mechanisms underlying internet gaming disorder (IGD) are important for diagnostic considerations and treatment development. However, neurobiological underpinnings of IGD remain relatively poorly understood.

METHODS

We employed multi-voxel pattern analysis (MVPA), a machine-learning approach, to examine the potential of neural features to statistically predict IGD status and treatment outcome (percentage change in weekly gaming time) for IGD. Cue-reactivity fMRI-task data were collected from 40 male IGD subjects and 19 male healthy control (HC) subjects. 23 IGD subjects received 6 weeks of craving behavioral intervention (CBI) treatment. MVPA was applied to classify IGD subjects from HCs and statistically predict clinical outcomes.

RESULTS

MVPA displayed a high (92.37%) accuracy (sensitivity of 90.00% and specificity of 94.74%) in the classification of IGD and HC subjects. The most discriminative brain regions that contribute to classification were the bilateral middle frontal gyrus, precuneus, and posterior lobe of the right cerebellum. MVPA statistically predicted clinical outcomes in the craving behavioral intervention (CBI) group (r = 0.48, p = 0.0032). The most strongly implicated brain regions in the prediction model were the right middle frontal gyrus, superior frontal gyrus, supramarginal gyrus, anterior/posterior lobes of the cerebellum and left postcentral gyrus.

CONCLUSIONS

The findings about cue-reactivity neural correlates could help identify IGD subjects and predict CBI-related treatment outcomes provide mechanistic insight into IGD and its treatment and may help promote treatment development efforts.

摘要

背景

网络成瘾障碍(IGD)的神经机制对于诊断考虑和治疗开发很重要。然而,IGD 的神经生物学基础仍知之甚少。

方法

我们采用多体素模式分析(MVPA),一种机器学习方法,来研究神经特征是否有可能在统计学上预测 IGD 状态和治疗结果(每周游戏时间的百分比变化)。从 40 名男性 IGD 患者和 19 名男性健康对照(HC)患者中采集了线索反应 fMRI 任务数据。23 名 IGD 患者接受了 6 周的渴求行为干预(CBI)治疗。MVPA 用于对 IGD 患者和 HC 进行分类,并对临床结果进行统计预测。

结果

MVPA 在 IGD 和 HC 患者的分类中显示出较高的准确性(92.37%)(敏感性为 90.00%,特异性为 94.74%)。对分类有贡献的最具区分性的大脑区域是双侧额中回、顶内叶和右小脑后叶。MVPA 对渴求行为干预(CBI)组的临床结果进行了统计学预测(r=0.48,p=0.0032)。预测模型中最受牵连的大脑区域是右额中回、额上回、缘上回、小脑前/后叶和左中央后回。

结论

关于线索反应神经相关性的发现可以帮助识别 IGD 患者,并预测 CBI 相关的治疗结果,为 IGD 及其治疗提供机制上的见解,并可能有助于促进治疗开发工作。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验