Suppr超能文献

分光光度法在线检测饮用水消毒剂:一种机器学习方法。

Spectrophotometric Online Detection of Drinking Water Disinfectant: A Machine Learning Approach.

机构信息

Scarce Resources and Circular Economy (ScaRCE), UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.

Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia.

出版信息

Sensors (Basel). 2020 Nov 21;20(22):6671. doi: 10.3390/s20226671.

Abstract

The spectra fingerprint of drinking water from a water treatment plant (WTP) is characterised by a number of light-absorbing substances, including organic, nitrate, disinfectant, and particle or turbidity. Detection of disinfectant (monochloramine) can be better achieved by separating its spectra from the combined spectra. In this paper, two major focuses are (i) the separation of monochloramine spectra from the combined spectra and (ii) assessment of the application of the machine learning algorithm in real-time detection of monochloramine. The support vector regression (SVR) model was developed using multi-wavelength ultraviolet-visible (UV-Vis) absorbance spectra and online amperometric monochloramine residual measurement data. The performance of the SVR model was evaluated by using four different kernel functions. Results show that (i) particles or turbidity in water have a significant effect on UV-Vis spectral measurement and improved modelling accuracy is achieved by using particle compensated spectra; (ii) modelling performance is further improved by compensating the spectra for natural organic matter (NOM) and nitrate (NO) and (iii) the choice of kernel functions greatly affected the SVR performance, especially the radial basis function (RBF) appears to be the highest performing kernel function. The outcomes of this research suggest that disinfectant residual (monochloramine) can be measured in real time using the SVR algorithm with a precision level of ± 0.1 mg L.

摘要

饮用水处理厂(WTP)的光谱指纹特征是由多种吸光物质组成的,包括有机物质、硝酸盐、消毒剂以及颗粒或浊度。通过将其光谱与组合光谱分离,可以更好地检测到消毒剂(一氯胺)。本文主要关注两个方面:(i)从组合光谱中分离出一氯胺光谱,以及(ii)评估机器学习算法在实时检测一氯胺中的应用。采用多波长紫外-可见(UV-Vis)吸光度光谱和在线电流安培法一氯胺残留测量数据,建立了支持向量回归(SVR)模型。采用四种不同的核函数对 SVR 模型的性能进行了评估。结果表明:(i)水中的颗粒或浊度对 UV-Vis 光谱测量有显著影响,通过使用颗粒补偿光谱可提高建模精度;(ii)通过补偿天然有机物(NOM)和硝酸盐(NO)的光谱,进一步提高了建模性能;(iii)核函数的选择对 SVR 性能有很大影响,特别是径向基函数(RBF)似乎是性能最高的核函数。本研究的结果表明,采用 SVR 算法可以实时测量消毒剂(一氯胺)残留,精度水平达到±0.1mg/L。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2456/7700489/242019550f5d/sensors-20-06671-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验