Suppr超能文献

Bi/SnO/TiO2-石墨烯纳米复合光催化剂用于太阳光可见光诱导的五氯苯酚光降解。

Bi/SnO/TiO-graphene nanocomposite photocatalyst for solar visible light-induced photodegradation of pentachlorophenol.

机构信息

Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran.

Department of Environmental Engineering, Faculty of Agriculture and Natural Resources, Ardakan University, Ardakan, Iran.

出版信息

Environ Sci Pollut Res Int. 2021 Mar;28(12):15236-15247. doi: 10.1007/s11356-020-11708-w. Epub 2020 Nov 24.

Abstract

In this study, for the first time, a TiO/graphene (G) heterostructure was synthesized and doped by Bi and SnO nanoparticles through a hydrothermal treatment. The as-synthesized nanocomposite was employed for photocatalytic degradation of pentachlorophenol (PCP) under visible light irradiation. Structural characterizations such as X-ray photoelectron spectroscopy (XPS) and X-ray diffraction spectroscopy (XRD) proved the valence band alignment at Bi/SnO/TiO-G interfaces and crystallinity of the nanocomposite, respectively. The as-developed nanocomposite photocatalyst was able to decompose 84% PCP, thanks to the generation of a large number of active OH and O radicals. To achieve this optimum photodegradation efficiency, various parameters such as pH, catalyst dosage, and PCP concentration were optimized. The results showed that the PCP photodegradation process followed the first-order kinetic model and the reaction rate constant rose from 0.007 min (Bi) to 0.0149 min (Bi/SnO/TiO-G). The PCP photodegradation efficiency did not decrease significantly after 5 cycles, and the nanocomposite photocatalyst still showed a high efficiency of 68% in the last cycle. The excellent photocatalytic activity of Bi/SnO/TiO-G is ascribed as well as the heterostructure of the nanocomposite photocatalyst.

摘要

在这项研究中,首次通过水热法合成了 TiO/graphene (G) 杂化结构,并掺杂了 Bi 和 SnO 纳米粒子。所合成的纳米复合材料用于可见光照射下的五氯苯酚(PCP)光催化降解。X 射线光电子能谱(XPS)和 X 射线衍射光谱(XRD)等结构特征分别证明了价带在 Bi/SnO/TiO-G 界面处的排列和纳米复合材料的结晶度。所开发的纳米复合材料光催化剂能够分解 84%的 PCP,这要归功于大量的活性 OH 和 O 自由基的产生。为了实现这种最佳的光降解效率,优化了各种参数,如 pH 值、催化剂用量和 PCP 浓度。结果表明,PCP 的光降解过程遵循一级动力学模型,反应速率常数从 0.007 min(Bi)上升到 0.0149 min(Bi/SnO/TiO-G)。在 5 个循环后,PCP 的光降解效率没有明显下降,最后一个循环中纳米复合材料光催化剂仍保持 68%的高效性。Bi/SnO/TiO-G 的优异光催化活性归因于纳米复合材料光催化剂的异质结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验