Brandenburg Cheryl, Soghomonian Jean-Jacques, Zhang Kunzhong, Sulkaj Ina, Randolph Brianna, Kachadoorian Marissa, Blatt Gene J
Autism Neurocircuitry Laboratory, Hussman Institute for Autism, Baltimore, MD, United States.
Program in Neuroscience, University of Maryland Baltimore School of Medicine, Baltimore, MD, United States.
Front Cell Neurosci. 2020 Nov 9;14:577858. doi: 10.3389/fncel.2020.577858. eCollection 2020.
Autism spectrum disorder (ASD) is behaviorally defined and diagnosed by delayed and/or impeded language, stereotyped repetitive behaviors, and difficulties with social interactions. Additionally, there are disruptions in motor processing, which includes the intent to execute movements, interrupted/inhibited action chain sequences, impaired execution of speech, and repetitive motor behaviors. Cortical loops through basal ganglia (BG) structures are known to play critical roles in the typical functioning of these actions. Specifically, corticostriate projections to the dorsal striatum (caudate and putamen) convey abundant input from motor, cognitive and limbic cortices and subsequently project to other BG structures. Excitatory dopamine (DA) type 1 receptors are predominantly expressed on GABAergic medium spiny neurons (MSNs) in the dorsal striatum as part of the "direct pathway" to GPi and SNpr whereas inhibitory DA type 2 receptors are predominantly expressed on MSNs that primarily project to GPe. This study aimed to better understand how this circuitry may be altered in ASD, especially concerning the neurochemical modulation of GABAergic MSNs within the two major BG pathways. We utilized two classical methods to analyze the postmortem BG in ASD in comparison to neurotypical cases: ligand binding autoradiography to quantify densities of GABA-A, GABA-B, 5-HT, and DA type 1 and 2 receptors and hybridization histochemistry (ISHH) to quantify mRNA for D1, D2 receptors and three key GABAergic subunits (α1, β2, and γ2), as well as the GABA synthesizing enzymes (GAD65/67). Results demonstrated significant increases in D2 mRNA within MSNs in both the caudate and putamen, which was further verified by proenkephalin mRNA that is co-expressed with the D2 receptor in the indirect pathway MSNs. In contrast, all other GABAergic, serotonergic and dopaminergic markers in the dorsal striatum had comparable labeling densities. These results indicate alterations in the indirect pathway of the BG, with possible implications for the execution of competing motor programs and E/I imbalance in the direct/indirect motor feedback pathways through thalamic and motor cortical areas. Results also provide insights regarding the efficacy of FDA-approved drugs used to treat individuals with ASD acting on specific DA and 5-HT receptor subtypes.
自闭症谱系障碍(ASD)的行为定义和诊断依据包括语言发育延迟和/或受阻、刻板重复行为以及社交互动困难。此外,运动处理也存在障碍,这包括执行动作的意图、中断/受抑制的动作链序列、言语执行受损以及重复运动行为。已知通过基底神经节(BG)结构的皮质环路在这些动作的正常功能中起着关键作用。具体而言,投射到背侧纹状体(尾状核和壳核)的皮质纹状体投射从运动、认知和边缘皮质传递大量输入,随后投射到其他BG结构。兴奋性多巴胺(DA)1型受体主要表达于背侧纹状体中的γ-氨基丁酸(GABA)能中等棘状神经元(MSN)上,作为通向苍白球内侧部(GPi)和黑质网状部(SNpr)的“直接通路”的一部分,而抑制性DA 2型受体主要表达于主要投射到苍白球外侧部(GPe)的MSN上。本研究旨在更好地了解该神经回路在ASD中可能如何改变,特别是关于两条主要BG通路内GABA能MSN的神经化学调节。与神经典型病例相比,我们利用两种经典方法分析了ASD患者死后的BG:配体结合放射自显影法来量化GABA - A、GABA - B、5 - 羟色胺(5 - HT)以及DA 1型和2型受体的密度,以及杂交组织化学(ISHH)来量化D1、D2受体和三个关键GABA能亚基(α1、β2和γ2)的信使核糖核酸(mRNA),以及GABA合成酶(谷氨酸脱羧酶65/67,GAD65/67)。结果表明,尾状核和壳核中MSN内的D2 mRNA显著增加,这通过在前脑啡肽mRNA中得到进一步验证,前脑啡肽mRNA在间接通路MSN中与D2受体共表达。相比之下,背侧纹状体中所有其他GABA能、5 - 羟色胺能和多巴胺能标记物的标记密度相当。这些结果表明BG的间接通路发生了改变,可能对竞争性运动程序的执行以及通过丘脑和运动皮质区域的直接/间接运动反馈通路中的兴奋/抑制失衡产生影响。结果还为美国食品药品监督管理局(FDA)批准的用于治疗ASD个体的作用于特定DA和5 - HT受体亚型的药物疗效提供了见解。