Suppr超能文献

量子力学/极度局域分子轨道嵌入策略用于激发态:与含时密度泛函理论和运动方程耦合簇的耦合。

Quantum Mechanics/Extremely Localized Molecular Orbital Embedding Strategy for Excited States: Coupling to Time-Dependent Density Functional Theory and Equation-of-Motion Coupled Cluster.

机构信息

Université de Lorraine & CNRS, Laboratoire de Physique et Chimie Théoriques (LPCT), UMR CNRS 7019, 1 Boulevard Arago, F-57078 Metz, France.

出版信息

J Chem Theory Comput. 2020 Dec 8;16(12):7490-7506. doi: 10.1021/acs.jctc.0c00956. Epub 2020 Nov 26.

Abstract

The QM/ELMO (quantum mechanics/extremely localized molecular orbital) method is a recently developed embedding technique in which the most important region of the system under examination is treated at fully quantum mechanical level, while the rest is described by means of transferred and frozen extremely localized molecular orbitals. In this paper, we propose the first application of the QM/ELMO approach to the investigation of excited states, and, in particular, we present the coupling of the QM/ELMO philosophy with Time-Dependent Density Functional Theory (TDDFT) and Equation-of-Motion Coupled Cluster with single and double substitutions (EOM-CCSD). The proposed TDDFT/ELMO and EOM-CCSD/ELMO strategies underwent a series of preliminary tests that were already considered for the validation of other embedding methods for excited states. The obtained results showed that the novel techniques allow the accurate description of localized excitations in large systems by only including a relatively small number of atoms in the region treated at fully quantum chemical level. Furthermore, for TDDFT/ELMO, it was also observed that (i) the method enables to avoid the presence of artificial low-lying charge-transfer states that may affect traditional TDDFT calculations, even using functionals that do not take into account long-range corrections, and (ii) the novel approach can be also successfully exploited to investigate local electronic transitions in quite large systems (e.g., reduced model of the Green Fluorescent Protein), and the accuracy of the results can be improved by including a sufficient number of chemically crucial fragments/residues in the quantum mechanical region. Finally, concerning EOM-CCSD/ELMO, it was also seen that, despite the quite crude approximation of an embedding potential given by frozen extremely localized molecular orbitals, the new strategy is able to satisfactorily account for the effects of the environment. This work paves the way to further extensions of the QM/ELMO philosophy for the study of local excitations in extended systems, suggesting the coupling of the QM/ELMO approach with other quantum chemical strategies for excited states, from the simplest ΔSCF techniques to the most advanced and computationally expensive multireferences methods.

摘要

QM/ELMO(量子力学/极端局域分子轨道)方法是一种最近开发的嵌入技术,其中所研究系统的最重要区域在完全量子力学水平上进行处理,而其余部分则通过转移和冻结的极端局域分子轨道来描述。在本文中,我们首次将 QM/ELMO 方法应用于激发态的研究,并特别提出了将 QM/ELMO 哲学与时间相关密度泛函理论(TDDFT)和单重和双重替换的运动方程耦合的 CC 理论(EOM-CCSD)相结合的方法。所提出的 TDDFT/ELMO 和 EOM-CCSD/ELMO 策略进行了一系列初步测试,这些测试已经考虑用于验证其他用于激发态的嵌入方法。所得到的结果表明,通过仅在完全量子化学水平上处理的区域中包含相对较少的原子,新的技术允许对大系统中的局域激发进行准确的描述。此外,对于 TDDFT/ELMO,还观察到(i)该方法能够避免可能影响传统 TDDFT 计算的人工低能电荷转移态的存在,即使使用不考虑长程校正的泛函,(ii)新方法也可以成功地用于研究相当大的系统中的局部电子跃迁,并且通过在量子力学区域中包含足够数量的化学关键片段/残基,可以提高结果的准确性。最后,对于 EOM-CCSD/ELMO,还可以看出,尽管由冻结的极端局域分子轨道给出的嵌入势相当粗糙,但新策略能够令人满意地考虑环境的影响。这项工作为进一步扩展 QM/ELMO 哲学以研究扩展系统中的局部激发铺平了道路,建议将 QM/ELMO 方法与用于激发态的其他量子化学策略相结合,从最简单的ΔSCF 技术到最先进和计算最昂贵的多参考方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验