Suppr超能文献

心脏发育和疾病中的三维染色质组织。

Three-dimensional chromatin organization in cardiac development and disease.

机构信息

Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, 850 Republican Street, Brotman Building, Seattle, WA 98109, USA.

Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California, 650 Charles Young Dr, Los Angeles, CA 90095, USA.

出版信息

J Mol Cell Cardiol. 2021 Feb;151:89-105. doi: 10.1016/j.yjmcc.2020.11.008. Epub 2020 Nov 24.

Abstract

Recent technological advancements in the field of chromatin biology have rewritten the textbook on nuclear organization. We now appreciate that the folding of chromatin in the three-dimensional space (i.e. its 3D "architecture") is non-random, hierarchical, and highly complex. While 3D chromatin structure is partially encoded in the primary sequence and thereby broadly conserved across cell types and states, a substantial portion of the genome seems to be dynamic during development or in disease. Moreover, there is growing evidence that at least some of the 3D structure of chromatin is functionally linked to gene regulation, both being modulated by and impacting on multiple nuclear processes (including DNA replication, transcription, and RNA splicing). In recent years, these new concepts have nourished several investigations about the functional role of 3D chromatin topology dynamics in the heart during development and disease. This review aims to provide a comprehensive overview of our current understanding in this field, and to discuss how this knowledge can inform further research as well as clinical practice.

摘要

近年来,染色质生物学领域的技术进步改写了细胞核组织的教科书。我们现在意识到,染色质在三维空间(即其 3D“结构”)中的折叠不是随机的,而是分层的,且高度复杂。虽然 3D 染色质结构部分编码在一级序列中,因此在细胞类型和状态上广泛保守,但基因组的很大一部分在发育或疾病过程中似乎是动态的。此外,越来越多的证据表明,染色质的至少一部分 3D 结构与基因调控功能相关,两者都受到多种核过程(包括 DNA 复制、转录和 RNA 剪接)的调节和影响。近年来,这些新概念催生了一些关于 3D 染色质拓扑动力学在发育和疾病过程中心脏中的功能作用的研究。本综述旨在提供该领域当前认识的全面概述,并讨论这些知识如何为进一步的研究和临床实践提供信息。

相似文献

1
Three-dimensional chromatin organization in cardiac development and disease.
J Mol Cell Cardiol. 2021 Feb;151:89-105. doi: 10.1016/j.yjmcc.2020.11.008. Epub 2020 Nov 24.
2
CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals.
Cell Syst. 2017 Dec 27;5(6):628-637.e6. doi: 10.1016/j.cels.2017.10.018. Epub 2017 Nov 29.
3
Hidden origami in nuclei highlights its non-random 3D genomic organization.
mBio. 2025 May 14;16(5):e0386124. doi: 10.1128/mbio.03861-24. Epub 2025 Apr 17.
4
Robust CTCF-Based Chromatin Architecture Underpins Epigenetic Changes in the Heart Failure Stress-Gene Response.
Circulation. 2019 Apr 16;139(16):1937-1956. doi: 10.1161/CIRCULATIONAHA.118.036726.
6
The role of 3D genome organization in development and cell differentiation.
Nat Rev Mol Cell Biol. 2019 Sep;20(9):535-550. doi: 10.1038/s41580-019-0132-4.
7
Rewiring of 3D Chromatin Topology Orchestrates Transcriptional Reprogramming and the Development of Human Dilated Cardiomyopathy.
Circulation. 2022 May 31;145(22):1663-1683. doi: 10.1161/CIRCULATIONAHA.121.055781. Epub 2022 Apr 11.
8
Unraveling the 3D genome of human malaria parasites.
Semin Cell Dev Biol. 2019 Jun;90:144-153. doi: 10.1016/j.semcdb.2018.07.015. Epub 2018 Jul 27.
9
Modeling the 3D Genome Using Hi-C and Nuclear Lamin-Genome Contacts.
Methods Mol Biol. 2022;2301:337-352. doi: 10.1007/978-1-0716-1390-0_18.
10
High-Resolution Mapping of Chromatin Conformation in Cardiac Myocytes Reveals Structural Remodeling of the Epigenome in Heart Failure.
Circulation. 2017 Oct 24;136(17):1613-1625. doi: 10.1161/CIRCULATIONAHA.117.029430. Epub 2017 Aug 11.

引用本文的文献

1
Proteomics and Machine Learning-Based Approach to Decipher Subcellular Proteome of Mouse Heart.
Mol Cell Proteomics. 2025 Apr;24(4):100952. doi: 10.1016/j.mcpro.2025.100952. Epub 2025 Mar 18.
2
Gender-specific genetic and epigenetic signatures in cardiovascular disease.
Front Cardiovasc Med. 2024 Mar 11;11:1355980. doi: 10.3389/fcvm.2024.1355980. eCollection 2024.
3
Three-dimensional genome structure and function.
MedComm (2020). 2023 Jul 8;4(4):e326. doi: 10.1002/mco2.326. eCollection 2023 Aug.
4
Nuclear mechanosignaling in striated muscle diseases.
Front Physiol. 2023 Mar 7;14:1126111. doi: 10.3389/fphys.2023.1126111. eCollection 2023.
6
Genome organization in cardiomyocytes expressing mutated A-type lamins.
Front Cell Dev Biol. 2022 Oct 7;10:1030950. doi: 10.3389/fcell.2022.1030950. eCollection 2022.
8
Evaluation of chromatin mesoscale organization.
APL Bioeng. 2022 Jan 12;6(1):010902. doi: 10.1063/5.0069286. eCollection 2022 Mar.

本文引用的文献

1
Genome-wide association and multi-omic analyses reveal ACTN2 as a gene linked to heart failure.
Nat Commun. 2020 Feb 28;11(1):1122. doi: 10.1038/s41467-020-14843-7.
2
Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association.
Circulation. 2020 Mar 3;141(9):e139-e596. doi: 10.1161/CIR.0000000000000757. Epub 2020 Jan 29.
3
CTCF mediates chromatin looping via N-terminal domain-dependent cohesin retention.
Proc Natl Acad Sci U S A. 2020 Jan 28;117(4):2020-2031. doi: 10.1073/pnas.1911708117. Epub 2020 Jan 14.
5
The structural basis for cohesin-CTCF-anchored loops.
Nature. 2020 Feb;578(7795):472-476. doi: 10.1038/s41586-019-1910-z. Epub 2020 Jan 6.
6
Methods for mapping 3D chromosome architecture.
Nat Rev Genet. 2020 Apr;21(4):207-226. doi: 10.1038/s41576-019-0195-2. Epub 2019 Dec 17.
7
Multi-omics profiling of mouse gastrulation at single-cell resolution.
Nature. 2019 Dec;576(7787):487-491. doi: 10.1038/s41586-019-1825-8. Epub 2019 Dec 11.
8
Genetic and Epigenetic Control of Heart Development.
Cold Spring Harb Perspect Biol. 2020 Jul 1;12(7):a036756. doi: 10.1101/cshperspect.a036756.
9
An enhancer cluster controls gene activity and topology of the SCN5A-SCN10A locus in vivo.
Nat Commun. 2019 Oct 30;10(1):4943. doi: 10.1038/s41467-019-12856-5.
10
Long-range enhancer-promoter interactions prevent predisposition to atrial fibrillation.
Proc Natl Acad Sci U S A. 2019 Nov 5;116(45):22692-22698. doi: 10.1073/pnas.1907418116. Epub 2019 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验