Centre for In Vivo Imaging, Newcastle University, United Kingdom.
Centre for Cancer, Newcastle University, United Kingdom.
Phys Med Biol. 2021 Jan 29;66(3):035018. doi: 10.1088/1361-6560/abce1c.
Positron emission tomography-magnetic resonance (PET-MR) scanners could improve radiotherapy planning through combining PET and MR functional imaging. This depends on acquiring high quality and quantitatively accurate images in the radiotherapy position. This study evaluated PET-MR image quality using a flat couch and coil bridge for pelvic radiotherapy. MR and PET image quality phantoms were imaged in three setups: phantom on the PET-MR couch with anterior coil on top (diagnostic), phantom on a flat couch with coil on top (couch), and phantom on the flat couch with coil on a coil bridge (radiotherapy). PET images were also acquired in each setup without the anterior coil. PET attenuation correction of the flat couch and coil bridge were generated using kilovoltage computed tomography (CT) images and of the anterior coil using megavoltage CT images. MR image quality was substantially affected, with MR signal to noise ratio (SNR) relative to the diagnostic setup of 89% ± 2% (mean ± standard error of the mean, couch) and 54% ± 1% (radiotherapy), likely due to the increased distance between the patient and receive coils. The reduction impacted the low-contrast detectability score: 23 ± 1 (diagnostic), 19.7 ± 0.3 (couch) and 15 ± 1 (radiotherapy). All other MR metrics agreed within one standard error. PET quantitative accuracy was also affected, with measured activity with anterior coil being different to diagnostic without anterior coil by -16.7% ± 0.2% (couch) and -17.7 ± 0.1% (radiotherapy), without attenuation correction modification. Including the couch and coil bridge attenuation correction reduced this difference to -7.5% ± 0.1%, and including the anterior coil reduced this to -2.7% ± 0.1%. This was better than the diagnostic setup with anterior coil (difference -8.3% ± 0.2%). This translated into greater PET SNR performance for the fully corrected radiotherapy setup compared to diagnostic with coil. However contrast recovery was unchanged by the modified attenuation correction, with the diagnostic setup remaining ∼2% better. Quantitative PET in the radiotherapy setup is possible if appropriate attenuation correction is used. Pelvic radiotherapy PET-MR imaging protocols will need to consider the impact on PET-MR image quality.
正电子发射断层扫描-磁共振(PET-MR)扫描仪可以通过结合 PET 和 MR 功能成像来改善放射治疗计划。这取决于在放射治疗位置获得高质量和定量准确的图像。本研究使用盆腔放射治疗的平板床和线圈桥评估了 PET-MR 图像质量。在三种设置中对 MR 和 PET 图像质量体模进行成像:前线圈位于顶部的 PET-MR 床体上的体模(诊断)、前线圈位于顶部的平板床体上的体模(床体)以及位于平板床体上的线圈桥上的体模(放射治疗)。在没有前线圈的情况下,还在每个设置中采集了 PET 图像。使用千伏 CT(kVCT)图像生成平板床和线圈桥的 PET 衰减校正,使用兆伏 CT(MVCT)图像生成前线圈的 PET 衰减校正。MR 图像质量受到很大影响,相对于诊断设置,MR 信噪比(SNR)分别为 89%±2%(平均值±标准误差,床体)和 54%±1%(放射治疗),这可能是由于患者与接收线圈之间的距离增加所致。这种降低影响了低对比度检测能力评分:23±1(诊断)、19.7±0.3(床体)和 15±1(放射治疗)。所有其他 MR 指标都在一个标准误差内一致。PET 定量准确性也受到影响,在前线圈的情况下测量的活性与没有前线圈的诊断情况不同,相差-16.7%±0.2%(床体)和-17.7±0.1%(放射治疗),未经衰减校正修正。包括平板床和线圈桥衰减校正将这种差异降低至-7.5%±0.1%,而包括前线圈则将其降低至-2.7%±0.1%。这优于具有前线圈的诊断设置(差异-8.3%±0.2%)。这意味着与具有线圈的诊断设置相比,完全校正的放射治疗设置具有更好的 PET SNR 性能。然而,通过修改后的衰减校正,对比度恢复没有变化,诊断设置仍然好约 2%。如果使用适当的衰减校正,则可以在放射治疗设置中进行定量 PET。盆腔放射治疗 PET-MR 成像方案将需要考虑对 PET-MR 图像质量的影响。