Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada.
Sci Rep. 2020 Nov 26;10(1):20648. doi: 10.1038/s41598-020-77146-3.
3D bioprinting of living cellular constructs with heterogeneity in cell types and extra cellular matrices (ECMs) matching those of biological tissues remains challenging. Here, we demonstrate that, through bioink material design, microextrusion-based (ME) bioprinting techniques have the potential to address this challenge. A new bioink employing alginate (1%), cellulose nanocrystal (CNC) (3%), and gelatin methacryloyl (GelMA) (5%) (namely 135ACG hybrid ink) was formulated for the direct printing of cell-laden and acellular architectures. The 135ACG ink displayed excellent shear-thinning behavior and solid-like properties, leading to high printability without cell damage. After crosslinking, the ACG gel can also provide a stiff ECM ideal for stromal cell growth. By controlling the degree of substitution and polymer concentration, a GelMA (4%) bioink was designed to encapsulate hepatoma cells (hepG2), as GelMA gel possesses the desired low mechanical stiffness matching that of human liver tissue. Four different versions of to-scale liver lobule-mimetic constructs were fabricated via ME bioprinting, with precise positioning of two different cell types (NIH/3T3 and hepG2) embedded in matching ECMs (135ACG and GelMA, respectively). The four versions allowed us to exam effects of mechanical cues and intercellular interactions on cell behaviors. Fibroblasts thrived in stiff 135ACG matrix and aligned at the 135ACG/GelMA boundary due to durotaxis, while hepG2 formed spheroids exclusively in the soft GelMA matrix. Elevated albumin production was observed in the bicellular 3D co-culture of hepG2 and NIH/3T3, both with and without direct intercellular contact, indicating that improved hepatic cell function can be attributed to soluble chemical factors. Overall, our results showed that complex constructs with multiple cell types and varying ECMs can be bioprinted and potentially useful for both fundamental biomedical research and translational tissue engineering.
3D 生物打印具有细胞类型和细胞外基质(ECM)异质性的活细胞构建体仍然具有挑战性,这些细胞类型和细胞外基质与生物组织相匹配。在这里,我们证明通过生物墨水材料设计,基于微挤出的(ME)生物打印技术具有解决这一挑战的潜力。一种新的生物墨水,使用海藻酸钠(1%)、纤维素纳米晶体(CNC)(3%)和明胶甲基丙烯酰(GelMA)(5%)(即 135ACG 混合墨水),用于直接打印细胞负载和无细胞结构。135ACG 墨水表现出出色的剪切稀化行为和固态特性,具有高可打印性而不会损害细胞。交联后,ACG 凝胶也可以提供理想的刚性 ECM,适合基质细胞生长。通过控制取代度和聚合物浓度,设计了一种 GelMA(4%)生物墨水来包封肝癌细胞(hepG2),因为 GelMA 凝胶具有与人类肝脏组织相匹配的所需低机械刚度。通过 ME 生物打印制造了四个不同比例的肝小叶模拟构建体,通过精确定位两种不同的细胞类型(NIH/3T3 和 hepG2)嵌入匹配的 ECM(分别为 135ACG 和 GelMA)。这四个版本使我们能够检查机械线索和细胞间相互作用对细胞行为的影响。成纤维细胞在刚性 135ACG 基质中茁壮成长,并由于趋硬性而在 135ACG/GelMA 边界处排列,而 hepG2 仅在柔软的 GelMA 基质中形成球体。在 hepG2 和 NIH/3T3 的双细胞 3D 共培养中,无论是有直接细胞间接触还是没有直接细胞间接触,都观察到白蛋白产量升高,这表明肝细胞功能的提高可归因于可溶性化学因素。总的来说,我们的结果表明,具有多种细胞类型和不同 ECM 的复杂构建体可以进行生物打印,并且可能对基础生物医学研究和转化组织工程都有用。