Suppr超能文献

相似文献

1
Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction.
Nat Mach Intell. 2019 Jun;1(6):269-276. doi: 10.1038/s42256-019-0057-9. Epub 2019 Jun 10.
2
X-ray CT image denoising with MINF: A modularized iterative network framework for data from multiple dose levels.
Comput Biol Med. 2023 Jan;152:106419. doi: 10.1016/j.compbiomed.2022.106419. Epub 2022 Dec 12.
4
Statistical Image Restoration for Low-Dose CT using Convolutional Neural Networks.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:1303-1306. doi: 10.1109/EMBC44109.2020.9176265.
5
Unpaired Low-Dose CT Denoising Network Based on Cycle-Consistent Generative Adversarial Network with Prior Image Information.
Comput Math Methods Med. 2019 Dec 7;2019:8639825. doi: 10.1155/2019/8639825. eCollection 2019.
6
Semi-Supervised Learning for Low-Dose CT Image Restoration with Hierarchical Deep Generative Adversarial Network (HD-GAN).
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:2683-2686. doi: 10.1109/EMBC.2019.8857572.

引用本文的文献

2
Conditional GAN performs better than orthopedic surgeon in virtual reduction of femoral neck fracture.
BMC Musculoskelet Disord. 2025 Jul 16;26(1):687. doi: 10.1186/s12891-025-08921-4.
4
Image-Based Monitoring of Thermal Ablation.
Bioengineering (Basel). 2025 Jan 15;12(1):78. doi: 10.3390/bioengineering12010078.
5
Multi-scale perceptual modulation network for low-dose computed tomography denoising.
Quant Imaging Med Surg. 2024 Dec 5;14(12):9290-9305. doi: 10.21037/qims-24-1145. Epub 2024 Nov 29.
7
A systematic review of deep learning-based denoising for low-dose computed tomography from a perceptual quality perspective.
Biomed Eng Lett. 2024 Aug 30;14(6):1153-1173. doi: 10.1007/s13534-024-00419-7. eCollection 2024 Nov.
8
Self-supervised learning for CT image denoising and reconstruction: a review.
Biomed Eng Lett. 2024 Sep 12;14(6):1207-1220. doi: 10.1007/s13534-024-00424-w. eCollection 2024 Nov.
9
Deep-learning-based attenuation map generation in kidney single photon emission computed tomography.
EJNMMI Phys. 2024 Oct 12;11(1):84. doi: 10.1186/s40658-024-00686-4.
10
Reconstructing and analyzing the invariances of low-dose CT image denoising networks.
Med Phys. 2025 Jan;52(1):188-200. doi: 10.1002/mp.17413. Epub 2024 Sep 30.

本文引用的文献

1
Deep Learning for Low-Dose CT Denoising Using Perceptual Loss and Edge Detection Layer.
J Digit Imaging. 2020 Apr;33(2):504-515. doi: 10.1007/s10278-019-00274-4.
2
Structurally-sensitive Multi-scale Deep Neural Network for Low-Dose CT Denoising.
IEEE Access. 2018;6:41839-41855. doi: 10.1109/ACCESS.2018.2858196. Epub 2018 Jul 20.
3
Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
Med Phys. 2019 Apr;46(4):1686-1696. doi: 10.1002/mp.13415. Epub 2019 Feb 14.
4
3-D Convolutional Encoder-Decoder Network for Low-Dose CT via Transfer Learning From a 2-D Trained Network.
IEEE Trans Med Imaging. 2018 Jun;37(6):1522-1534. doi: 10.1109/TMI.2018.2832217.
5
PWLS-ULTRA: An Efficient Clustering and Learning-Based Approach for Low-Dose 3D CT Image Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1498-1510. doi: 10.1109/TMI.2018.2832007.
6
Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network.
IEEE Trans Med Imaging. 2018 Jun;37(6):1358-1369. doi: 10.1109/TMI.2018.2823756.
7
Low-Dose CT Image Denoising Using a Generative Adversarial Network With Wasserstein Distance and Perceptual Loss.
IEEE Trans Med Imaging. 2018 Jun;37(6):1348-1357. doi: 10.1109/TMI.2018.2827462.
8
Image Reconstruction is a New Frontier of Machine Learning.
IEEE Trans Med Imaging. 2018 Jun;37(6):1289-1296. doi: 10.1109/TMI.2018.2833635.
9
Image reconstruction by domain-transform manifold learning.
Nature. 2018 Mar 21;555(7697):487-492. doi: 10.1038/nature25988.
10
Sharpness-Aware Low-Dose CT Denoising Using Conditional Generative Adversarial Network.
J Digit Imaging. 2018 Oct;31(5):655-669. doi: 10.1007/s10278-018-0056-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验