National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
Biochem J. 2020 Nov 27;477(22):4453-4471. doi: 10.1042/BCJ20200794.
Proteins are essential molecules that carry out key functions in a cell. However, as a result of aging or stressful environments, the protein undergoes a range of spontaneous covalent modifications, including the formation of abnormal l-isoaspartyl residues from aspartyl or asparaginyl residues, which can disrupt the protein's inherent structure and function. PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT: EC 2.1.1.77), an evolutionarily conserved ancient protein repairing enzyme (PRE), converts such abnormal l-isoaspartyl residues to normal l-aspartyl residues and re-establishes the protein's native structure and function. Although originally discovered in animals as a PRE, PIMT emerged as a key PRE in plants, particularly in seeds, in which PIMT plays a predominant role in preserving seed vigor and viability for prolonged periods of time. Interestingly, higher plants encode a second PIMT (PIMT2) protein which possesses a unique N-terminal extension, and exhibits several distinct features and far more complexity than non-plant PIMTs. Recent studies indicate that the role of PIMT is not restricted to preserving seed vigor and longevity but is also implicated in enhancing the growth and survivability of plants under stressful environments. Furthermore, expression studies indicate the tantalizing possibility that PIMT is involved in various physiological processes apart from its role in seed vigor, longevity and plant's survivability under abiotic stress. This review article particularly describes new insights and emerging interest in all facets of this enzyme in plants along with a concise comparative overview on isoAsp formation, and the role and regulation of PIMTs across evolutionary diverse species. Additionally, recent methods and their challenges in identifying isoaspartyl containing proteins (PIMT substrates) are highlighted.
蛋白质是执行细胞关键功能的必需分子。然而,由于衰老或应激环境的影响,蛋白质会经历一系列自发的共价修饰,包括天冬氨酸或天冬酰胺残基形成异常的 l-异天冬氨酸残基,这可能破坏蛋白质的固有结构和功能。蛋白质 l-异天冬氨酸甲基转移酶(PIMT:EC 2.1.1.77)是一种进化上保守的古老蛋白质修复酶(PRE),可将这种异常的 l-异天冬氨酸残基转化为正常的 l-天冬氨酸残基,并重新建立蛋白质的天然结构和功能。虽然最初在动物中作为 PRE 发现,但 PIMT 作为植物中的关键 PRE 出现,特别是在种子中,PIMT 在保持种子活力和活力方面发挥着主要作用,可延长时间。有趣的是,高等植物编码第二种 PIMT(PIMT2)蛋白,它具有独特的 N 端延伸,表现出几个不同的特征和比非植物 PIMTs 更复杂。最近的研究表明,PIMT 的作用不仅限于保持种子活力和寿命,还涉及增强植物在应激环境下的生长和存活能力。此外,表达研究表明,PIMT 可能参与除了在种子活力、寿命和植物在非生物胁迫下的存活能力方面的作用之外的各种生理过程。本文特别描述了在植物中这种酶的各个方面的新见解和新出现的兴趣,以及对 isoAsp 形成的简明比较概述,以及 PIMTs 在进化多样化物种中的作用和调节。此外,还强调了鉴定含有异天冬氨酸的蛋白质(PIMT 底物)的最新方法及其挑战。