Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States.
Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States.
J Am Chem Soc. 2020 Dec 9;142(49):20902-20911. doi: 10.1021/jacs.0c11103. Epub 2020 Nov 29.
Racemization is considered to be an intrinsic stereochemical feature of free radical chemistry as can be seen in traditional radical halogenation reactions of optically active tertiary C-H bonds. If the facile process of radical racemization could be effectively combined with an ensuing step of bond formation in an enantioselective fashion, then it would give rise to deracemizative functionalization of racemic tertiary C-H bonds for stereoselective construction of chiral molecules bearing quaternary stereocenters. As a demonstration of this unique potential in radical chemistry, we herein report that metalloradical catalysis can be successfully applied to devise Co(II)-based catalytic system for enantioconvergent radical amination of racemic tertiary C(sp)-H bonds. The key to the success of the radical process is the development of Co(II)-based metalloradical catalyst with fitting steric, electronic, and chiral environments of the -symmetric chiral amidoporphyrin as the supporting ligand. The existence of optimal reaction temperature is recognized as an important factor in the realization of the enantioconvergent radical process. Supported by an optimized chiral ligand, the Co(II)-based metalloradical system can effectively catalyze the enantioconvergent 1,6-amination of racemic tertiary C(sp)-H bonds at the optimal temperature, affording chiral α-tertiary amines in excellent yields with high enantiocontrol of the newly created quaternary stereocenters. Systematic studies, including experiments utilizing optically active deuterium-labeled C-H substrates as a model system, shed light on the underlying mechanistic details of this new catalytic process for enantioconvergent radical C-H amination. The remarkable power to create quaternary stereocenters bearing multiple functionalities from ubiquitous C-H bonds, as showcased with stereoselective construction of bicyclic -heterocycles, opens the door for future synthetic applications of this new radical technology.
消旋化被认为是自由基化学的内在立体化学特征,这可以从传统的立体选择性自由基卤化反应中观察到。如果容易发生的自由基消旋过程能够与随后的键形成步骤有效地结合,并且以对映选择性的方式进行,那么它将导致外消旋化的功能化外消旋叔 C-H 键,从而立体选择性地构建具有季立体中心的手性分子。作为自由基化学中这种独特潜力的一个证明,我们在此报告,金属自由基催化可以成功地应用于设计基于 Co(II)的催化体系,用于外消旋叔 C(sp)-H 键的对映选择性自由基胺化。该自由基过程的关键是开发基于 Co(II)的金属自由基催化剂,该催化剂具有合适的空间、电子和手性环境,-对称手性酰胺卟啉作为配体。存在最佳反应温度被认为是实现对映选择性自由基过程的一个重要因素。在优化的手性配体的支持下,基于 Co(II)的金属自由基体系可以有效地催化外消旋叔 C(sp)-H 键的对映选择性 1,6-胺化,在最佳温度下以优异的产率提供手性α-叔胺,新生成的季立体中心具有高对映控制。包括利用光学活性氘标记 C-H 底物作为模型系统的实验在内的系统研究,阐明了这种新的对映选择性自由基 C-H 胺化催化过程的潜在机制细节。从普遍存在的 C-H 键中创建具有多个功能的季立体中心的显著能力,如立体选择性构建双环-杂环,为这种新的自由基技术的未来合成应用开辟了道路。