Suppr超能文献

来自仿生声纳的回波视图单元

Echo View Cells From Bio-Inspired Sonar.

作者信息

Isbell Jacob D, Horiuchi Timothy K

机构信息

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, United States.

Institute for Systems Research, University of Maryland, College Park, MD, United States.

出版信息

Front Neurorobot. 2020 Nov 5;14:567991. doi: 10.3389/fnbot.2020.567991. eCollection 2020.

Abstract

Place recognition is naturally informed by the mosaic of sensations we remember from previously visiting a location and general knowledge of our location in the world. Neurons in the mammalian brain (specifically in the hippocampus formation) named "place cells" are thought to reflect this recognition of place and are involved in implementing a spatial map that can be used for path planning and memory recall. In this research, we use bat-inspired sonar to mimic how bats might sense objects in the environment and recognize the views associated with different places. These "echo view cells" may contribute (along with odometry) to the creation of place cell representations observed in bats. Although detailed sensory template matching is straightforward, it is quite unlikely that a flying animal or robot will return to the exact 3-D position and pose where the original memory was captured. Instead, we strive to recognize views over extended regions that are many body lengths in size, reducing the number of places to be remembered for a map. We have successfully demonstrated some of this spatial invariance by training feed-forward neural networks (traditional neural networks and spiking neural networks) to recognize 66 distinct places in a laboratory environment over a limited range of translations and rotations. We further show how the echo view cells respond between known views and how their outputs can be combined over time for continuity.

摘要

位置识别自然地受到我们对先前访问过的地点的记忆所形成的感觉拼图以及我们在世界上位置的一般知识的影响。哺乳动物大脑(特别是海马体结构)中的神经元,即所谓的“位置细胞”,被认为反映了对位置的这种识别,并参与构建可用于路径规划和记忆回忆的空间地图。在这项研究中,我们使用受蝙蝠启发的声纳来模拟蝙蝠如何感知环境中的物体并识别与不同地点相关的视图。这些“回声视图细胞”(可能与里程计一起)有助于在蝙蝠中观察到的位置细胞表征的创建。虽然详细的感官模板匹配很简单,但飞行的动物或机器人不太可能回到捕获原始记忆的确切三维位置和姿态。相反,我们努力识别大小为许多身体长度的扩展区域上的视图,从而减少地图中需要记忆的地点数量。我们通过训练前馈神经网络(传统神经网络和脉冲神经网络)在有限的平移和旋转范围内识别实验室环境中的66个不同地点,成功展示了这种空间不变性的一些方面。我们进一步展示了回声视图细胞在已知视图之间的反应,以及它们的输出如何随时间组合以保持连续性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c02/7674830/35ed2cb33758/fnbot-14-567991-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验