Suppr超能文献

空间蛋白质组学方法分析骨骼肌肌纤维。

Spatial Proteomic Approach to Characterize Skeletal Muscle Myofibers.

机构信息

Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, Baltimore, Maryland 21205, United States.

Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.

出版信息

J Proteome Res. 2021 Jan 1;20(1):888-894. doi: 10.1021/acs.jproteome.0c00673. Epub 2020 Nov 30.

Abstract

Skeletal muscle myofibers have differential protein expression resulting in functionally distinct slow- and fast-twitch types. While certain protein classes are well-characterized, the depth of all proteins involved in this process is unknown. We utilized the Human Protein Atlas (HPA) and the HPASubC tool to classify mosaic expression patterns of staining across 49,600 unique tissue microarray (TMA) images using a visual proteomic approach. We identified 2164 proteins with potential mosaic expression, of which 1605 were categorized as "likely" or "real." This list included both well-known fiber-type-specific and novel proteins. A comparison of the 1605 mosaic proteins with a mass spectrometry (MS)-derived proteomic dataset of single human muscle fibers led to the assignment of 111 proteins to fiber types. We additionally used a multiplexed immunohistochemistry approach, a multiplexed RNA-ISH approach, and STRING v11 to further assign or suggest fiber types of newly characterized mosaic proteins. This visual proteomic analysis of mature skeletal muscle myofibers greatly expands the known repertoire of twitch-type-specific proteins.

摘要

骨骼肌肌纤维具有不同的蛋白质表达,导致具有功能不同的慢肌和快肌类型。虽然某些蛋白质类别已经得到很好的描述,但参与这一过程的所有蛋白质的深度仍不清楚。我们利用人类蛋白质图谱(HPA)和 HPASubC 工具,使用视觉蛋白质组学方法对 49600 个独特的组织微阵列(TMA)图像的染色镶嵌表达模式进行分类。我们鉴定出了 2164 种具有潜在镶嵌表达的蛋白质,其中 1605 种被归类为“可能”或“真实”。该列表包括众所周知的纤维型特异性和新型蛋白质。将这 1605 种镶嵌蛋白与单个人类肌肉纤维的质谱(MS)衍生蛋白质组数据集进行比较,导致将 111 种蛋白质分配到纤维类型。我们还使用了多重免疫组织化学方法、多重 RNA-ISH 方法和 STRING v11,进一步分配或建议新鉴定的镶嵌蛋白的纤维类型。这种对成熟骨骼肌肌纤维的视觉蛋白质组学分析大大扩展了已知的抽搐型特异性蛋白质的范围。

相似文献

1
Spatial Proteomic Approach to Characterize Skeletal Muscle Myofibers.
J Proteome Res. 2021 Jan 1;20(1):888-894. doi: 10.1021/acs.jproteome.0c00673. Epub 2020 Nov 30.
2
Extracellular signal-regulated kinase pathway is differentially involved in beta-agonist-induced hypertrophy in slow and fast muscles.
Am J Physiol Cell Physiol. 2007 May;292(5):C1681-9. doi: 10.1152/ajpcell.00466.2006. Epub 2006 Dec 6.
3
Erythropoietin contributes to slow oxidative muscle fiber specification via PGC-1α and AMPK activation.
Int J Biochem Cell Biol. 2013 Jul;45(7):1155-64. doi: 10.1016/j.biocel.2013.03.007. Epub 2013 Mar 20.
4
The impact of life-long strength versus endurance training on muscle fiber morphology and phenotype composition in older men.
J Appl Physiol (1985). 2023 Dec 1;135(6):1360-1371. doi: 10.1152/japplphysiol.00208.2023. Epub 2023 Oct 26.
5
On marathons and Sprints: an integrated quantitative proteomics and transcriptomics analysis of differences between slow and fast muscle fibers.
Mol Cell Proteomics. 2012 Jun;11(6):M111.010801. doi: 10.1074/mcp.M111.010801. Epub 2011 Dec 30.
6
Single cell RNA-seq analysis of the flexor digitorum brevis mouse myofibers.
Skelet Muscle. 2021 May 17;11(1):13. doi: 10.1186/s13395-021-00269-2.
7
Proteomic analysis of slow- and fast-twitch skeletal muscles.
Proteomics. 2005 Jul;5(11):2896-906. doi: 10.1002/pmic.200401181.
8
Microgenomic analysis in skeletal muscle: expression signatures of individual fast and slow myofibers.
PLoS One. 2011 Feb 22;6(2):e16807. doi: 10.1371/journal.pone.0016807.
9
Human skeletal muscle fiber heterogeneity beyond myosin heavy chains.
Nat Commun. 2025 Feb 19;16(1):1764. doi: 10.1038/s41467-025-56896-6.
10
The specific mitochondrial unfolded protein response in fast- and slow-twitch muscles of high-fat diet-induced insulin-resistant rats.
Front Endocrinol (Lausanne). 2023 Mar 16;14:1127524. doi: 10.3389/fendo.2023.1127524. eCollection 2023.

引用本文的文献

1
Integrative genetic and epigenetic control of skeletal muscle fiber traits in agricultural animals.
Front Genet. 2025 May 2;16:1566553. doi: 10.3389/fgene.2025.1566553. eCollection 2025.
7
Spatial metabolomics reveals skeletal myofiber subtypes.
Sci Adv. 2023 Feb 3;9(5):eadd0455. doi: 10.1126/sciadv.add0455.
8
Proteomic profiling of impaired excitation-contraction coupling and abnormal calcium handling in muscular dystrophy.
Proteomics. 2022 Dec;22(23-24):e2200003. doi: 10.1002/pmic.202200003. Epub 2022 Aug 8.

本文引用的文献

1
Single cell RNA-seq analysis of the flexor digitorum brevis mouse myofibers.
Skelet Muscle. 2021 May 17;11(1):13. doi: 10.1186/s13395-021-00269-2.
2
HELZ directly interacts with CCR4-NOT and causes decay of bound mRNAs.
Life Sci Alliance. 2019 Sep 30;2(5). doi: 10.26508/lsa.201900405. Print 2019 Oct.
3
An expanded proteome of cardiac t-tubules.
Cardiovasc Pathol. 2019 Sep-Oct;42:15-20. doi: 10.1016/j.carpath.2019.05.001. Epub 2019 May 24.
4
Comprehensive Integration of Single-Cell Data.
Cell. 2019 Jun 13;177(7):1888-1902.e21. doi: 10.1016/j.cell.2019.05.031. Epub 2019 Jun 6.
6
Dimensionality reduction for visualizing single-cell data using UMAP.
Nat Biotechnol. 2018 Dec 3. doi: 10.1038/nbt.4314.
8
The Gene Ontology Resource: 20 years and still GOing strong.
Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338. doi: 10.1093/nar/gky1055.
9
Cardiomyocytes have mosaic patterns of protein expression.
Cardiovasc Pathol. 2018 May-Jun;34:50-57. doi: 10.1016/j.carpath.2018.03.002. Epub 2018 Mar 24.
10
In-depth tissue profiling using multiplexed immunohistochemical consecutive staining on single slide.
Sci Immunol. 2016 Jul 14;1(1):aaf6925. doi: 10.1126/sciimmunol.aaf6925. Epub 2016 Jun 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验