Shinde Gajanan, Shiyani Sangita, Shelke Santosh, Chouthe Rashmi, Kulkarni Deepak, Marvaniya Khushboo
Department of Pharmaceutics, Parul Institute of Pharmacy, Faculty of Pharmacy, Parul University, Vadodara, Gujarat, 391760, India.
Department of Pharmaceutics, Srinath College of Pharmacy, Bajaj Nagar, Aurangabad, Maharashtra, 431136, India.
Prog Biomater. 2020 Dec;9(4):259-275. doi: 10.1007/s40204-020-00147-y. Epub 2020 Nov 30.
The present investigation was aimed to synthesize, optimize, and characterize lipid/drug conjugate nanoparticles for delivering 5-fluorouracil (5-FU) to treat brain cancer. The Box-Behnken design was used to optimize the formulation, evaluate the particle size, entrapment efficiency, morphology, in vitro drug release study, and stability profiles. The in vitro performance was executed using cell line studies. The in vivo performance was carried out for pharmacokinetic studies, sterility test, biodistribution studies, and distribution lipid-drug conjugated (LDC) nanoparticles in the brain. Particle size, zeta potential, entrapment efficiency, and morphology of the optimized formulation demonstrated desirable results. In vitro release pattern showed initial fast release, followed by sustained release up to 48 h. Cytotoxic effects of blank stearic acid nanoparticles, LDC nanoparticles, and 5-FU solution on human glioma cell lines U373 MG cell showed more cytotoxicity by LDC-NPs compared to others. The values reported for LDC (AUC = 19.37 ± 0.09 µg/mL h and VD 2.4 ± 0.24 mL) and pure drug (AUC = 8.37 ± 0.04 µg/mL h and VD = 5.24 ± 0.29 mL) indicate higher concentrations of LDC in systemic circulation, while pure 5-FU was found to be largely available in tissue rather than blood circulation. The t for LDC represents an approximate rise by ninefold, while MRT (12.10 ± 0.44 h) denotes 12-fold rise than pure 5-FU indicating the prolonged circulation of LDC. Free 5-FU concentration in the brain was maximum (5.24 ± 0.01 μg/g) after 3 h, while for the optimized formulation of LDC it was twofold greater estimated as 11.52 ± 0.32 μg/g. In conclusion, the efficiency of 5-FU to treat the brain is increased when it is formulated with LDC nanoparticles.
本研究旨在合成、优化并表征脂质/药物共轭纳米颗粒,用于递送5-氟尿嘧啶(5-FU)以治疗脑癌。采用Box-Behnken设计来优化制剂,评估粒径、包封率、形态、体外药物释放研究和稳定性概况。体外性能通过细胞系研究进行。体内性能用于药代动力学研究、无菌试验、生物分布研究以及脂质-药物共轭(LDC)纳米颗粒在脑中的分布。优化制剂的粒径、zeta电位、包封率和形态显示出理想的结果。体外释放模式显示出初始快速释放,随后持续释放长达48小时。空白硬脂酸纳米颗粒、LDC纳米颗粒和5-FU溶液对人胶质瘤细胞系U373 MG细胞的细胞毒性作用表明,与其他相比,LDC纳米颗粒具有更高的细胞毒性。LDC(AUC = 19.37 ± 0.09 μg/mL·h和VD 2.4 ± 0.24 mL)和纯药物(AUC = 8.37 ± 0.04 μg/mL·h和VD = 5.24 ± 0.29 mL)报告的值表明LDC在体循环中的浓度更高,而纯5-FU在组织中而非血液循环中大量存在。LDC的t表示大约增加了九倍,而MRT(12.10 ± 0.44 h)比纯5-FU表示增加了12倍,表明LDC的循环时间延长。脑中游离5-FU浓度在3小时后最高(5.24 ± 0.01 μg/g),而对于LDC的优化制剂,估计高出两倍,为11.52 ± 0.32 μg/g。总之,当5-FU与LDC纳米颗粒制剂合用时,其治疗脑癌的效率会提高。