Jacquet Quentin, Kim Eun-Jin, Hollerbach Rainer
Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT, UK.
ENSTA ParisTech Université Paris-Saclay, 828 Boulevard des Maréchaux, 91120 Palaiseau, France.
Entropy (Basel). 2018 Aug 17;20(8):613. doi: 10.3390/e20080613.
We report the time-evolution of Probability Density Functions (PDFs) in a toy model of self-organised shear flows, where the formation of shear flows is induced by a finite memory time of a stochastic forcing, manifested by the emergence of a bimodal PDF with the two peaks representing non-zero mean values of a shear flow. Using theoretical analyses of limiting cases, as well as numerical solutions of the full Fokker-Planck equation, we present a thorough parameter study of PDFs for different values of the correlation time and amplitude of stochastic forcing. From time-dependent PDFs, we calculate the information length ( L ), which is the total number of statistically different states that a system passes through in time and utilise it to understand the information geometry associated with the formation of bimodal or unimodal PDFs. We identify the difference between the relaxation and build-up of the shear gradient in view of information change and discuss the total information length ( L ∞ = L ( t → ∞ ) ) which maps out the underlying attractor structures, highlighting a unique property of L ∞ which depends on the trajectory/history of a PDF's evolution.
我们报告了自组织剪切流玩具模型中概率密度函数(PDFs)随时间的演化情况,在该模型中,剪切流的形成是由随机强迫的有限记忆时间诱导的,表现为双峰PDF的出现,两个峰值代表剪切流的非零平均值。通过对极限情况的理论分析以及完整福克 - 普朗克方程的数值解,我们针对随机强迫的相关时间和幅度的不同值,对PDFs进行了全面的参数研究。从随时间变化的PDFs中,我们计算信息长度(L),它是系统在时间上经过的统计上不同状态的总数,并利用它来理解与双峰或单峰PDFs形成相关的信息几何结构。鉴于信息变化,我们确定了剪切梯度弛豫和建立之间的差异,并讨论了映射出潜在吸引子结构的总信息长度(L∞ = L(t → ∞)),突出了L∞的一个独特属性,该属性取决于PDF演化的轨迹/历史。