Suppr超能文献

基于AMH Copula在存在右删失数据情况下从二元生存模型后验分布中抽样的贝叶斯计算方法。

Bayesian Computational Methods for Sampling from the Posterior Distribution of a Bivariate Survival Model, Based on AMH Copula in the Presence of Right-Censored Data.

作者信息

Saraiva Erlandson Ferreira, Suzuki Adriano Kamimura, Milan Luis Aparecido

机构信息

Instituto de Matemática, Universidade Federal de Mato Grosso do Sul, Campo Grande 79070-900, Brazil.

Departamento de Matemática Aplicada e Estatística, Universidade de São Paulo, São Carlos 13566-590, Brazil.

出版信息

Entropy (Basel). 2018 Aug 27;20(9):642. doi: 10.3390/e20090642.

Abstract

In this paper, we study the performance of Bayesian computational methods to estimate the parameters of a bivariate survival model based on the Ali-Mikhail-Haq copula with marginal distributions given by Weibull distributions. The estimation procedure was based on Monte Carlo Markov Chain (MCMC) algorithms. We present three version of the Metropolis-Hastings algorithm: Independent Metropolis-Hastings (IMH), Random Walk Metropolis (RWM) and Metropolis-Hastings with a natural-candidate generating density (MH). Since the creation of a good candidate generating density in IMH and RWM may be difficult, we also describe how to update a parameter of interest using the slice sampling (SS) method. A simulation study was carried out to compare the performances of the IMH, RWM and SS. A comparison was made using the sample root mean square error as an indicator of performance. Results obtained from the simulations show that the SS algorithm is an effective alternative to the IMH and RWM methods when simulating values from the posterior distribution, especially for small sample sizes. We also applied these methods to a real data set.

摘要

在本文中,我们研究了基于具有威布尔分布给出的边际分布的阿里 - 米哈伊尔 - 哈克(Ali-Mikhail-Haq)Copula的双变量生存模型参数估计的贝叶斯计算方法的性能。估计过程基于蒙特卡罗马尔可夫链(MCMC)算法。我们提出了三种版本的梅特罗波利斯 - 黑斯廷斯(Metropolis-Hastings)算法:独立梅特罗波利斯 - 黑斯廷斯(IMH)、随机游走梅特罗波利斯(RWM)和具有自然候选生成密度的梅特罗波利斯 - 黑斯廷斯(MH)。由于在IMH和RWM中创建良好的候选生成密度可能很困难,我们还描述了如何使用切片采样(SS)方法更新感兴趣的参数。进行了一项模拟研究以比较IMH、RWM和SS的性能。使用样本均方根误差作为性能指标进行了比较。模拟得到的结果表明,在从后验分布模拟值时,特别是对于小样本量,SS算法是IMH和RWM方法的有效替代方法。我们还将这些方法应用于一个实际数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eea6/7513167/70cdc9beda65/entropy-20-00642-g0A1a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验