Delvenne Jean-Charles
Institute of Information and Communication Technologies, Electronics and Applied Mathematics (ICTEAM) and Center for Operations Research and Econometrics (CORE), Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
Entropy (Basel). 2019 Mar 20;21(3):302. doi: 10.3390/e21030302.
In this discussion paper we argue that category theory may play a useful role in formulating, and perhaps proving, results in ergodic theory, topogical dynamics and open systems theory (control theory). As examples, we show how to characterize Kolmogorov-Sinai, Shannon entropy and topological entropy as the unique functors to the nonnegative reals satisfying some natural conditions. We also provide a purely categorical proof of the existence of the maximal equicontinuous factor in topological dynamics. We then show how to define open systems (that can interact with their environment), interconnect them, and define control problems for them in a unified way.
在本讨论文件中,我们认为范畴论可能在遍历理论、拓扑动力学和开放系统理论(控制理论)中结果的表述甚至证明方面发挥有益作用。作为示例,我们展示了如何将柯尔莫哥洛夫 - 西奈熵、香农熵和拓扑熵刻画为满足某些自然条件的到非负实数的唯一函子。我们还给出了拓扑动力学中最大等度连续因子存在性的纯范畴论证明。然后我们展示了如何定义开放系统(能够与环境相互作用),将它们相互连接,并以统一的方式为它们定义控制问题。