Suppr超能文献

脂质受体 GPR31(G 蛋白偶联受体 31)调节血小板反应性和血栓形成而不影响止血。

Lipid Receptor GPR31 (G-Protein-Coupled Receptor 31) Regulates Platelet Reactivity and Thrombosis Without Affecting Hemostasis.

机构信息

Division of Hematology/Oncology, Center for Hemostasis and Thrombosis Research, Tufts Medical Center, Boston, MA (L.V.D., N.N., C.G., E.K.F., R.S., L.C., A.K.).

Departments of Medicine (L.C., A.K.), Tufts University School of Medicine, Boston, MA.

出版信息

Arterioscler Thromb Vasc Biol. 2021 Jan;41(1):e33-e45. doi: 10.1161/ATVBAHA.120.315154. Epub 2020 Dec 3.

Abstract

OBJECTIVE

12-LOX (12-lipoxygenase) produces a number of bioactive lipids including 12(S)-HETE that are involved in inflammation and platelet reactivity. The GPR31 (G-protein-coupled receptor 31) is the proposed receptor of 12(S)-HETE; however, it is not known whether the 12(S)-HETE-GPR31 signaling axis serves to enhance or inhibit platelet activity. Approach and Results: Using pepducin technology and biochemical approaches, we provide evidence that 12(S)-HETE-GPR31 signals through Gi to enhance PAR (protease-activated receptor)-4-mediated platelet activation and arterial thrombosis using both human platelets and mouse carotid artery injury models. 12(S)-HETE suppressed AC (adenylyl cyclase) activity through GPR31 and resulted in Rap1 (Ras-related protein 1) and p38 activation and low but detectable calcium flux but did not induce platelet aggregation. A GPR31 third intracellular (i3) loop-derived pepducin, GPR310 (G-protein-coupled receptor 310), significantly inhibited platelet aggregation in response to thrombin, collagen, and PAR4 agonist, AYPGKF, in human and mouse platelets but relative sparing of PAR1 agonist SFLLRN in human platelets. GPR310 treatment gave a highly significant 80% protection (=0.0018) against ferric chloride-induced carotid artery injury in mice by extending occlusion time, without any effect on tail bleeding. PAR4-mediated dense granule secretion and calcium flux were both attenuated by GPR310. Consistent with these results, GPR310 inhibited 12(S)-HETE-mediated and PAR4-mediated Rap1-GTP and RASA3 translocation to the plasma membrane and attenuated PAR4-Akt and ERK activation. GPR310 caused a right shift in thrombin-mediated human platelet aggregation, comparable to the effects of inhibition of the Gi-coupled P2Y receptor. Co-immunoprecipitation studies revealed that GPR31 and PAR4 form a heterodimeric complex in recombinant systems.

CONCLUSIONS

The 12-LOX product 12(S)-HETE stimulates GPR31-Gi-signaling pathways, which enhance thrombin-PAR4 platelet activation and arterial thrombosis in human platelets and mouse models. Suppression of this bioactive lipid pathway, as exemplified by a GPR31 pepducin antagonist, may provide beneficial protective effects against platelet aggregation and arterial thrombosis with minimal effect on hemostasis.

摘要

目的

12-LOX(12-脂氧合酶)产生多种生物活性脂质,包括参与炎症和血小板反应性的 12(S)-HETE。GPR31(G 蛋白偶联受体 31)是 12(S)-HETE 的拟议受体;然而,尚不清楚 12(S)-HETE-GPR31 信号轴是增强还是抑制血小板活性。方法和结果:使用肽聚糖技术和生化方法,我们提供了证据表明,12(S)-HETE-GPR31 通过 Gi 信号传导增强 PAR(蛋白酶激活受体)-4 介导的血小板激活和动脉血栓形成,使用人血小板和小鼠颈动脉硬化损伤模型。12(S)-HETE 通过 GPR31 抑制 AC(腺苷酸环化酶)活性,导致 Rap1(Ras 相关蛋白 1)和 p38 激活以及低但可检测的钙通量,但不会诱导血小板聚集。GPR31 第三细胞内(i3)环衍生的肽聚糖,GPR310(G 蛋白偶联受体 310),显著抑制人血小板和小鼠血小板对凝血酶、胶原和 PAR4 激动剂 AYPGKF 的聚集反应,但对人血小板中 PAR1 激动剂 SFLLRN 的相对保护作用。GPR310 治疗在小鼠中对三氯化铁诱导的颈动脉硬化损伤提供了高度显著的 80%保护(=0.0018),延长了闭塞时间,对尾部出血没有影响。PAR4 介导的致密颗粒分泌和钙通量均被 GPR310 减弱。与这些结果一致,GPR310 抑制 12(S)-HETE 介导和 PAR4 介导的 Rap1-GTP 和 RASA3 向质膜易位,并减弱 PAR4-Akt 和 ERK 激活。GPR310 导致凝血酶介导的人血小板聚集向右移位,与抑制 Gi 偶联 P2Y 受体的作用相当。免疫沉淀研究表明,GPR31 和 PAR4 在重组系统中形成异二聚体复合物。结论:12-LOX 产物 12(S)-HETE 刺激 GPR31-Gi 信号通路,增强人血小板和小鼠模型中凝血酶-PAR4 血小板激活和动脉血栓形成。抑制这种生物活性脂质途径,例如 GPR31 肽聚糖拮抗剂,可能对血小板聚集和动脉血栓形成提供有益的保护作用,对止血的影响最小。

相似文献

1
Lipid Receptor GPR31 (G-Protein-Coupled Receptor 31) Regulates Platelet Reactivity and Thrombosis Without Affecting Hemostasis.
Arterioscler Thromb Vasc Biol. 2021 Jan;41(1):e33-e45. doi: 10.1161/ATVBAHA.120.315154. Epub 2020 Dec 3.
3
Anticoagulant and antithrombotic properties of intracellular protease-activated receptor antagonists.
J Thromb Haemost. 2007 Mar;5(3):571-6. doi: 10.1111/j.1538-7836.2007.02364.x. Epub 2006 Dec 13.
4
The ATP-gated P2X1 receptor plays a pivotal role in activation of aspirin-treated platelets by thrombin and epinephrine.
J Biol Chem. 2008 Jul 4;283(27):18493-504. doi: 10.1074/jbc.M800358200. Epub 2008 May 14.
5
Redundancy and interaction of thrombin- and collagen-mediated platelet activation in tail bleeding and carotid thrombosis in mice.
Arterioscler Thromb Vasc Biol. 2014 Dec;34(12):2563-9. doi: 10.1161/ATVBAHA.114.304244. Epub 2014 Oct 2.
6
A mouse model of the protease-activated receptor 4 Pro310Leu variant has reduced platelet reactivity.
J Thromb Haemost. 2024 Jun;22(6):1715-1726. doi: 10.1016/j.jtha.2024.03.004. Epub 2024 Mar 19.
7
Suboptimal activation of protease-activated receptors enhances alpha2beta1 integrin-mediated platelet adhesion to collagen.
J Biol Chem. 2009 Dec 11;284(50):34640-7. doi: 10.1074/jbc.M109.020990. Epub 2009 Oct 8.
8
PAR4, but not PAR1, signals human platelet aggregation via Ca2+ mobilization and synergistic P2Y12 receptor activation.
J Biol Chem. 2006 Sep 8;281(36):26665-74. doi: 10.1074/jbc.M602174200. Epub 2006 Jul 12.
9
Inhibition of protease-activated receptor 4 impairs platelet procoagulant activity during thrombus formation in human blood.
J Thromb Haemost. 2016 Aug;14(8):1642-54. doi: 10.1111/jth.13293. Epub 2016 Jun 22.
10
Blocking the protease-activated receptor 1-4 heterodimer in platelet-mediated thrombosis.
Circulation. 2006 Mar 7;113(9):1244-54. doi: 10.1161/CIRCULATIONAHA.105.587758. Epub 2006 Feb 27.

引用本文的文献

2
Case Report: Transcatheter valve implantation in a 13-year-old teenager with critical aortic stenosis and Singleton-Merten syndrome.
Front Cardiovasc Med. 2025 May 8;12:1506887. doi: 10.3389/fcvm.2025.1506887. eCollection 2025.
3
The pyruvate-GPR31 axis promotes transepithelial dendrite formation in human intestinal dendritic cells.
Proc Natl Acad Sci U S A. 2024 Oct 29;121(44):e2318767121. doi: 10.1073/pnas.2318767121. Epub 2024 Oct 21.
4
Role of the intestinal microbiota in contributing to weight disorders and associated comorbidities.
Clin Microbiol Rev. 2024 Sep 12;37(3):e0004523. doi: 10.1128/cmr.00045-23. Epub 2024 Jun 28.
5
Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer.
Front Cell Dev Biol. 2024 Mar 5;12:1326231. doi: 10.3389/fcell.2024.1326231. eCollection 2024.
6
Antiplatelet strategies: past, present, and future.
J Thromb Haemost. 2023 Dec;21(12):3317-3328. doi: 10.1016/j.jtha.2023.09.013.
7
Bioactive lipid regulation of platelet function, hemostasis, and thrombosis.
Pharmacol Ther. 2023 Jun;246:108420. doi: 10.1016/j.pharmthera.2023.108420. Epub 2023 Apr 24.
9
Eicosanoids in inflammation in the blood and the vessel.
Front Pharmacol. 2022 Sep 27;13:997403. doi: 10.3389/fphar.2022.997403. eCollection 2022.
10
C1-inhibitor influence on platelet activation by thrombin receptors agonists.
Clin Appl Thromb Hemost. 2022 Jan-Dec;28:10760296221120422. doi: 10.1177/10760296221120422.

本文引用的文献

1
Using PAR4 Inhibition as an Anti-Thrombotic Approach: Why, How, and When?
Int J Mol Sci. 2019 Nov 11;20(22):5629. doi: 10.3390/ijms20225629.
2
Universal Activation Index for Class A GPCRs.
J Chem Inf Model. 2019 Sep 23;59(9):3938-3945. doi: 10.1021/acs.jcim.9b00604. Epub 2019 Sep 6.
4
Enhanced potency of prasugrel on protease-activated receptors following bivalirudin treatment for PCI as compared to clopidogrel.
Thromb Res. 2019 May;177:59-69. doi: 10.1016/j.thromres.2019.01.017. Epub 2019 Feb 13.
5
Protease-activated receptor 4 activity promotes platelet granule release and platelet-leukocyte interactions.
Platelets. 2019;30(1):126-135. doi: 10.1080/09537104.2017.1406076. Epub 2018 Dec 18.
6
Platelet biology and functions: new concepts and clinical perspectives.
Nat Rev Cardiol. 2019 Mar;16(3):166-179. doi: 10.1038/s41569-018-0110-0.
7
PAR4 (Protease-Activated Receptor 4) Antagonism With BMS-986120 Inhibits Human Ex Vivo Thrombus Formation.
Arterioscler Thromb Vasc Biol. 2018 Feb;38(2):448-456. doi: 10.1161/ATVBAHA.117.310104. Epub 2017 Dec 21.
8
Trends in GPCR drug discovery: new agents, targets and indications.
Nat Rev Drug Discov. 2017 Dec;16(12):829-842. doi: 10.1038/nrd.2017.178. Epub 2017 Oct 27.
9
First Selective 12-LOX Inhibitor, ML355, Impairs Thrombus Formation and Vessel Occlusion In Vivo With Minimal Effects on Hemostasis.
Arterioscler Thromb Vasc Biol. 2017 Oct;37(10):1828-1839. doi: 10.1161/ATVBAHA.117.309868. Epub 2017 Aug 3.
10
The expansive role of oxylipins on platelet biology.
J Mol Med (Berl). 2017 Jun;95(6):575-588. doi: 10.1007/s00109-017-1542-4. Epub 2017 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验