Suppr超能文献

关于使用孟德尔随机化检验 Barker 假说以及健康与疾病的发育起源(DOHaD)的警示。

A cautionary note on using Mendelian randomization to examine the Barker hypothesis and Developmental Origins of Health and Disease (DOHaD).

机构信息

The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia.

Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.

出版信息

J Dev Orig Health Dis. 2021 Oct;12(5):688-693. doi: 10.1017/S2040174420001105. Epub 2020 Dec 4.

Abstract

Recent studies have used Mendelian randomization (MR) to investigate the observational association between low birth weight (BW) and increased risk of cardiometabolic outcomes, specifically cardiovascular disease, glycemic traits, and type 2 diabetes (T2D), and inform on the validity of the Barker hypothesis. We used simulations to assess the validity of these previous MR studies, and to determine whether a better formulated model can be used in this context. Genetic and phenotypic data were simulated under a model of no direct causal effect of offspring BW on cardiometabolic outcomes and no effect of maternal genotype on offspring cardiometabolic risk through intrauterine mechanisms; where the observational relationship between BW and cardiometabolic risk was driven entirely by horizontal genetic pleiotropy in the offspring (i.e. offspring genetic variants affecting both BW and cardiometabolic disease simultaneously rather than a mechanism consistent with the Barker hypothesis). We investigated the performance of four commonly used MR analysis methods (weighted allele score MR (WAS-MR), inverse variance weighted MR (IVW-MR), weighted median MR (WM-MR), and MR-Egger) and a new approach, which tests the association between maternal genotypes related to offspring BW and offspring cardiometabolic risk after conditioning on offspring genotype at the same loci. We caution against using traditional MR analyses, which do not take into account the relationship between maternal and offspring genotypes, to assess the validity of the Barker hypothesis, as results are biased in favor of a causal relationship. In contrast, we recommend the aforementioned conditional analysis framework utilizing maternal and offspring genotypes as a valid test of not only the Barker hypothesis, but also to investigate hypotheses relating to the Developmental Origins of Health and Disease more broadly.

摘要

最近的研究使用孟德尔随机化(MR)来研究低出生体重(BW)与心血管疾病、血糖特征和 2 型糖尿病(T2D)等代谢结果风险增加之间的观察关联,并为 Barker 假说的有效性提供信息。我们使用模拟来评估这些之前的 MR 研究的有效性,并确定在这种情况下是否可以使用更好的模型。在没有后代 BW 对代谢结果的直接因果作用的模型下,模拟遗传和表型数据,以及没有通过宫内机制母本基因型对后代代谢风险的影响;BW 和代谢风险之间的观察关系完全由后代中的水平遗传多效性驱动(即同时影响 BW 和代谢疾病的后代遗传变异,而不是与 Barker 假说一致的机制)。我们调查了四种常用的 MR 分析方法(加权等位基因评分 MR(WAS-MR)、逆方差加权 MR(IVW-MR)、加权中位数 MR(WM-MR)和 MR-Egger)和一种新方法的性能,该方法在调节同一基因座上后代基因型后,测试与后代 BW 相关的母本基因型与后代代谢风险之间的关联。我们警告不要使用传统的 MR 分析,这些分析没有考虑母本和后代基因型之间的关系,来评估 Barker 假说的有效性,因为结果偏向于因果关系。相比之下,我们建议使用上述条件分析框架,利用母本和后代的基因型作为 Barker 假说的有效测试,也可以更广泛地研究与健康和疾病的发育起源相关的假说。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验