Liu Xiaowei, Nakamura Fumihiko
School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
J Biomed Res. 2020 Jul 31;35(4):284-293. doi: 10.7555/JBR.34.20200063.
Mechanotransduction, a conversion of mechanical forces into biochemical signals, is essential for human development and physiology. It is observable at all levels ranging from the whole body, organs, tissues, organelles down to molecules. Dysregulation results in various diseases such as muscular dystrophies, hypertension-induced vascular and cardiac hypertrophy, altered bone repair and cell deaths. Since mechanotransduction occurs at nanoscale, nanosciences and applied nanotechnology are powerful for studying molecular mechanisms and pathways of mechanotransduction. Atomic force microscopy, magnetic and optical tweezers are commonly used for force measurement and manipulation at the single molecular level. Force is also used to control cells, topographically and mechanically by specific types of nano materials for tissue engineering. Mechanotransduction research will become increasingly important as a sub-discipline under nanomedicine. Here we review nanotechnology approaches using force measurements and manipulations at the molecular and cellular levels during mechanotransduction, which has been increasingly play important role in the advancement of nanomedicine.
机械转导,即将机械力转化为生化信号的过程,对人类发育和生理机能至关重要。从全身、器官、组织、细胞器直至分子的各个层面都可观察到这一过程。调节异常会导致多种疾病,如肌肉萎缩症、高血压引发的血管和心脏肥大、骨修复改变以及细胞死亡。由于机械转导发生在纳米尺度,纳米科学和应用纳米技术对于研究机械转导的分子机制和途径具有强大作用。原子力显微镜、磁镊和光镊通常用于单分子水平的力测量和操作。力还被用于通过特定类型的纳米材料对细胞进行地形学和力学控制,以用于组织工程。作为纳米医学的一个子学科,机械转导研究将变得越来越重要。在此,我们综述了在机械转导过程中在分子和细胞水平上使用力测量和操作的纳米技术方法,这些方法在纳米医学的发展中日益发挥着重要作用。