Department for Computational Biology, Indraprastha Institute of Information Technology, Delhi 110020, India.
Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore.
Nucleic Acids Res. 2021 Feb 22;49(3):e13. doi: 10.1093/nar/gkaa1138.
Recent advances in single-cell open-chromatin and transcriptome profiling have created a challenge of exploring novel applications with a meaningful transformation of read-counts, which often have high variability in noise and drop-out among cells. Here, we introduce UniPath, for representing single-cells using pathway and gene-set enrichment scores by a transformation of their open-chromatin or gene-expression profiles. The robust statistical approach of UniPath provides high accuracy, consistency and scalability in estimating gene-set enrichment scores for every cell. Its framework provides an easy solution for handling variability in drop-out rate, which can sometimes create artefact due to systematic patterns. UniPath provides an alternative approach of dimension reduction of single-cell open-chromatin profiles. UniPath's approach of predicting temporal-order of single-cells using their pathway enrichment scores enables suppression of covariates to achieve correct order of cells. Analysis of mouse cell atlas using our approach yielded surprising, albeit biologically-meaningful co-clustering of cell-types from distant organs. By enabling an unconventional method of exploiting pathway co-occurrence to compare two groups of cells, our approach also proves to be useful in inferring context-specific regulations in cancer cells. Available at https://reggenlab.github.io/UniPathWeb/.
单细胞开放染色质和转录组谱分析的最新进展带来了一个挑战,即需要探索具有意义的转化的新应用,而这些转化通常会导致细胞间的噪声和缺失具有高度的可变性。在这里,我们引入了 UniPath,用于通过转化其开放染色质或基因表达谱,使用途径和基因集富集分数来表示单细胞。UniPath 的稳健统计方法在估计每个细胞的基因集富集分数方面具有高精度、一致性和可扩展性。其框架为处理缺失率的可变性提供了一个简单的解决方案,缺失率有时会由于系统模式而产生伪影。UniPath 提供了单细胞开放染色质谱降维的另一种方法。UniPath 使用途径富集分数预测单细胞时间顺序的方法能够抑制协变量,以实现细胞的正确顺序。使用我们的方法分析小鼠细胞图谱,产生了令人惊讶的、但具有生物学意义的来自远距离器官的细胞类型的共聚类。通过启用一种非常规的方法来利用途径共现来比较两组细胞,我们的方法也被证明在推断癌细胞中的特定于上下文的调节方面是有用的。可在 https://reggenlab.github.io/UniPathWeb/ 上获得。