College of Science and Engineering, James Cook University, Townsville, 4811, Australia.
School of Engineering and Mathematical Sciences, La Trobe University, Melbourne, 3086, Australia.
Sci Rep. 2020 Dec 4;10(1):21282. doi: 10.1038/s41598-020-78184-7.
Mortality risk prediction can greatly improve the utilization of resources in intensive care units (ICUs). Existing schemes in ICUs today require laborious manual input of many complex parameters. In this work, we present a scheme that uses variations in vital signs over a 24-h period to make mortality risk assessments for 3-day, 7-day, and 14-day windows. We develop a hybrid neural network model that combines convolutional (CNN) layers with bidirectional long short-term memory (BiLSTM) to predict mortality from statistics describing the variation of heart rate, blood pressure, respiratory rate, blood oxygen levels, and temperature. Our scheme performs strongly compared to state-of-the-art schemes in the literature for mortality prediction, with our highest-performing model achieving an area under the receiver-operator curve of 0.884. We conclude that the use of a hybrid CNN-BiLSTM network is highly effective in determining mortality risk for the 3, 7, and 14 day windows from vital signs. As vital signs are routinely recorded, in many cases automatically, our scheme could be implemented such that highly accurate mortality risk could be predicted continuously and automatically, reducing the burden on healthcare providers and improving patient outcomes.
死亡率预测可以极大地提高重症监护病房(ICU)资源的利用效率。目前 ICU 中的现有方案需要费力地手动输入许多复杂的参数。在这项工作中,我们提出了一种使用 24 小时内生命体征变化来评估 3 天、7 天和 14 天窗口的死亡率风险的方案。我们开发了一种混合神经网络模型,将卷积(CNN)层与双向长短期记忆(BiLSTM)相结合,根据描述心率、血压、呼吸率、血氧水平和体温变化的统计数据来预测死亡率。与文献中的最新方案相比,我们的方案在死亡率预测方面表现出色,表现最好的模型的接收者操作曲线下面积达到了 0.884。我们得出的结论是,混合 CNN-BiLSTM 网络在确定 3、7 和 14 天窗口的死亡率风险方面非常有效。由于生命体征通常是常规记录的,在许多情况下是自动记录的,因此我们的方案可以实现,从而可以连续自动地预测出非常准确的死亡率风险,减轻医疗保健提供者的负担并改善患者的预后。