Suppr超能文献

免疫原性细胞死亡的动态布尔模型

Dynamical Boolean Modeling of Immunogenic Cell Death.

作者信息

Checcoli Andrea, Pol Jonathan G, Naldi Aurelien, Noel Vincent, Barillot Emmanuel, Kroemer Guido, Thieffry Denis, Calzone Laurence, Stoll Gautier

机构信息

Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.

Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, Université de Paris, Sorbonne Université, Institut Universitaire de France, Paris, France.

出版信息

Front Physiol. 2020 Nov 12;11:590479. doi: 10.3389/fphys.2020.590479. eCollection 2020.

Abstract

As opposed to the standard tolerogenic apoptosis, immunogenic cell death (ICD) constitutes a type of cellular demise that elicits an adaptive immune response. ICD has been characterized in malignant cells following cytotoxic interventions, such as chemotherapy or radiotherapy. Briefly, ICD of cancer cells releases some stress/danger signals that attract and activate dendritic cells (DCs). The latter can then engulf and cross-present tumor antigens to T lymphocytes, thus priming a cancer-specific immunity. This series of reactions works as a positive feedback loop where the antitumor immunity further improves the therapeutic efficacy by targeting cancer cells spared by the cytotoxic agent. However, not all chemotherapeutic drugs currently approved for cancer treatment are able to stimulate bona fide ICD: some commonly used agents, such as cisplatin or 5-fluorouracil, are unable to activate all features of ICD. Therefore, a better characterization of the process could help identify some gene or protein candidates to target pharmacologically and suggest combinations of drugs that would favor/increase antitumor immune response. To this end, we have built a mathematical model of the major cell types that intervene in ICD, namely cancer cells, DCs, CD8 and CD4 T cells. Our model not only integrates intracellular mechanisms within each individual cell entity, but also incorporates intercellular communications between them. The resulting cell population model recapitulates key features of the dynamics of ICD after an initial treatment, in particular the time-dependent size of the different cell types. The model is based on a discrete Boolean formalism and is simulated by means of a software tool, UPMaBoSS, which performs stochastic simulations with continuous time, considering the dynamics of the system at the cell population level with appropriate timing of events, and accounting for death and division of each cell type. With this model, the time scales of some of the processes involved in ICD, which are challenging to measure experimentally, have been predicted. In addition, our model analysis led to the identification of actionable targets for boosting ICD-induced antitumor response. All computational analyses and results are compiled in interactive notebooks which cover the presentation of the network structure, model simulations, and parameter sensitivity analyses.

摘要

与标准的耐受性凋亡相反,免疫原性细胞死亡(ICD)是一种能引发适应性免疫反应的细胞死亡类型。ICD已在细胞毒性干预(如化疗或放疗)后的恶性细胞中得到表征。简而言之,癌细胞的ICD会释放一些应激/危险信号,这些信号会吸引并激活树突状细胞(DC)。然后,后者可以吞噬肿瘤抗原并将其交叉呈递给T淋巴细胞,从而启动癌症特异性免疫。这一系列反应形成一个正反馈回路,其中抗肿瘤免疫通过靶向细胞毒性药物未作用到的癌细胞进一步提高治疗效果。然而,目前批准用于癌症治疗的并非所有化疗药物都能够刺激真正的ICD:一些常用药物,如顺铂或5-氟尿嘧啶,无法激活ICD的所有特征。因此,更好地表征这一过程有助于识别一些可进行药理靶向的基因或蛋白质候选物,并提出有利于/增强抗肿瘤免疫反应的药物组合。为此,我们构建了一个涉及ICD的主要细胞类型(即癌细胞、DC、CD8和CD4 T细胞)的数学模型。我们的模型不仅整合了每个单独细胞实体中的细胞内机制,还纳入了它们之间的细胞间通讯。由此产生的细胞群体模型概括了初始治疗后ICD动态的关键特征,特别是不同细胞类型随时间变化的大小。该模型基于离散布尔形式主义,并通过软件工具UPMaBoSS进行模拟,该工具在连续时间内进行随机模拟,考虑细胞群体水平上系统的动态以及事件的适当时间安排,并考虑每种细胞类型的死亡和分裂。利用这个模型,预测了ICD中一些难以通过实验测量的过程的时间尺度。此外,我们的模型分析导致识别出增强ICD诱导的抗肿瘤反应的可操作靶点。所有计算分析和结果都汇编在交互式笔记本中,其中涵盖了网络结构的展示、模型模拟和参数敏感性分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/928f/7690454/5f3f76091008/fphys-11-590479-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验