Suppr超能文献

创伤性颅内出血患者死亡率的预测因素:一项国家创伤数据库研究

Predictors of Mortality in Traumatic Intracranial Hemorrhage: A National Trauma Data Bank Study.

作者信息

Wu Esther, Marthi Siddharth, Asaad Wael F

机构信息

Department of Neurosurgery, Warren Alpert Medical School of Brown University, Providence, RI, United States.

Carney Institute for Brain Science, Brown University, Providence, RI, United States.

出版信息

Front Neurol. 2020 Nov 17;11:587587. doi: 10.3389/fneur.2020.587587. eCollection 2020.

Abstract

Traumatic intracranial hemorrhage (tICH) accounts for significant trauma morbidity and mortality. Several studies have developed prognostic models for tICH outcomes, but previous models face limitations, including poor generalizability and limited accuracy. The objective was to develop a prognostic model and determine predictors of mortality using the largest trauma database in the U.S., applying rigorous analytical methodology with true hold-out-set model validation. We identified 248,536 patients in the National Trauma Data Bank (NTDB) from 2012 to 2016 with a diagnosis code associated with tICH. For each admission, we collected demographic information, systolic blood pressure, blood alcohol level (BAL), Glasgow Coma Score (GCS), Injury Severity Score (ISS), presence of epidural/subdural/subarachnoid/intraparenchymal hemorrhage, comorbidities, complications, trauma center level, and trauma center region. Our final study population was 212,666 patients following exclusion of records with missing data. The dependent variable was patient death. Linear support vector machine (SVM) classification was carried out with recursive feature selection. Model performance was assessed using holdout 10-fold cross-validation. Cross-validation demonstrated a mean accuracy of 0.792 (95% CI 0.783-0.799). Accuracy, precision, recall, and AUC were 0.827, 0.309, 0.750, and 0.791, respectively. In the final model, high ISS, advanced age, subdural hemorrhage, and subarachnoid hemorrhage were associated with increased mortality, while high GCS verbal and motor subscores, current smoker, BAL beyond the legal limit, and level 1 trauma center were associated with decreased mortality. A linear SVM model was developed for tICH, with nine features selected as predictors of mortality. These findings are applicable to multiple hemorrhage subtypes and may benefit the triage of high risk patients upon admission. While many studies have attempted to create models to predict mortality in TBI, we sought to confirm those predictors using modern modeling approaches, machine learning, and true hold-out test sets, using the largest available TBI database in the U.S. We find that while the predictors we identify are consistent with prior reports, overall prediction accuracy is somewhat lower than prior reports when assessed more rigorously.

摘要

创伤性颅内出血(tICH)是创伤致残和致死的重要原因。多项研究已开发出针对tICH预后的预测模型,但以往的模型存在局限性,包括普遍适用性差和准确性有限。本研究旨在利用美国最大的创伤数据库,运用严格的分析方法并通过真实的留出集模型验证,开发一种预后模型并确定死亡率的预测因素。我们在国家创伤数据库(NTDB)中识别出2012年至2016年期间248,536例伴有与tICH相关诊断代码的患者。对于每次入院,我们收集了人口统计学信息、收缩压、血液酒精水平(BAL)、格拉斯哥昏迷评分(GCS)、损伤严重程度评分(ISS)、硬膜外/硬膜下/蛛网膜下/脑实质内出血情况、合并症、并发症、创伤中心级别以及创伤中心所在地区。在排除数据缺失的记录后,我们最终的研究人群为212,666例患者。因变量为患者死亡情况。采用递归特征选择进行线性支持向量机(SVM)分类。使用留出法10折交叉验证评估模型性能。交叉验证显示平均准确率为0.792(95%置信区间0.783 - 0.799)。准确率、精确率、召回率和AUC分别为0.827、0.309、0.750和0.791。在最终模型中,高ISS、高龄、硬膜下出血和蛛网膜下出血与死亡率增加相关,而高GCS语言和运动子评分、当前吸烟者、BAL超过法定限量以及1级创伤中心与死亡率降低相关。我们为tICH开发了一个线性SVM模型,选择了九个特征作为死亡率的预测因素。这些发现适用于多种出血亚型,可能有助于入院时对高危患者进行分诊。虽然许多研究试图创建模型来预测创伤性脑损伤(TBI)的死亡率,但我们试图使用现代建模方法、机器学习以及真实的留出测试集,利用美国最大的可用TBI数据库来确认这些预测因素。我们发现,虽然我们识别出的预测因素与先前的报告一致,但在更严格评估时,总体预测准确率略低于先前报告。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8e/7705094/b74df71fa1d5/fneur-11-587587-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验