Sun Jing, Wang Lan, Liu Qiao, Tárnok Attila, Su Xuantao
School of Microelectronics, Shandong University, Jinan, China.
Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China.
Biomed Opt Express. 2020 Oct 23;11(11):6674-6686. doi: 10.1364/BOE.405557. eCollection 2020 Nov 1.
The subtyping of Acute lymphocytic leukemia (ALL) is important for proper treatment strategies and prognosis. Conventional methods for manual blood and bone marrow testing are time-consuming and labor-intensive, while recent flow cytometric immunophenotyping has the limitations such as high cost. Here we develop the deep learning-based light scattering imaging flow cytometry for label-free classification of ALL. The single ALL cells confined in three dimensional (3D) hydrodynamically focused stream are excited by light sheet. Our label-free microfluidic cytometry obtains big-data two dimensional (2D) light scattering patterns from single ALL cells of B/T subtypes. A deep learning framework named Inception V3-SIFT (Scale invariant feature transform)-Scattering Net (ISSC-Net) is developed, which can perform high-precision classification of T-ALL and B-ALL cell line cells with an accuracy of 0.993 ± 0.003. Our deep learning-based 2D light scattering flow cytometry is promising for automatic and accurate subtyping of un-stained ALL.
急性淋巴细胞白血病(ALL)的亚型分类对于制定恰当的治疗策略和判断预后至关重要。传统的手工血液和骨髓检测方法耗时且费力,而近期的流式细胞免疫表型分析存在成本高等局限性。在此,我们开发了基于深度学习的光散射成像流式细胞术,用于ALL的无标记分类。被限制在三维(3D)流体动力学聚焦流中的单个ALL细胞由光片激发。我们的无标记微流控细胞术从B/T亚型的单个ALL细胞中获取大数据二维(2D)光散射模式。开发了一种名为Inception V3 - SIFT(尺度不变特征变换)-散射网络(ISSC - Net)的深度学习框架,它能够对T - ALL和B - ALL细胞系细胞进行高精度分类,准确率为0.993±0.003。我们基于深度学习的二维光散射流式细胞术在未染色ALL的自动、准确亚型分类方面具有广阔前景。