Suppr超能文献

基于深度学习的光散射微流控细胞术用于无标记急性淋巴细胞白血病分类

Deep learning-based light scattering microfluidic cytometry for label-free acute lymphocytic leukemia classification.

作者信息

Sun Jing, Wang Lan, Liu Qiao, Tárnok Attila, Su Xuantao

机构信息

School of Microelectronics, Shandong University, Jinan, China.

Institute of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, China.

出版信息

Biomed Opt Express. 2020 Oct 23;11(11):6674-6686. doi: 10.1364/BOE.405557. eCollection 2020 Nov 1.

Abstract

The subtyping of Acute lymphocytic leukemia (ALL) is important for proper treatment strategies and prognosis. Conventional methods for manual blood and bone marrow testing are time-consuming and labor-intensive, while recent flow cytometric immunophenotyping has the limitations such as high cost. Here we develop the deep learning-based light scattering imaging flow cytometry for label-free classification of ALL. The single ALL cells confined in three dimensional (3D) hydrodynamically focused stream are excited by light sheet. Our label-free microfluidic cytometry obtains big-data two dimensional (2D) light scattering patterns from single ALL cells of B/T subtypes. A deep learning framework named Inception V3-SIFT (Scale invariant feature transform)-Scattering Net (ISSC-Net) is developed, which can perform high-precision classification of T-ALL and B-ALL cell line cells with an accuracy of 0.993 ± 0.003. Our deep learning-based 2D light scattering flow cytometry is promising for automatic and accurate subtyping of un-stained ALL.

摘要

急性淋巴细胞白血病(ALL)的亚型分类对于制定恰当的治疗策略和判断预后至关重要。传统的手工血液和骨髓检测方法耗时且费力,而近期的流式细胞免疫表型分析存在成本高等局限性。在此,我们开发了基于深度学习的光散射成像流式细胞术,用于ALL的无标记分类。被限制在三维(3D)流体动力学聚焦流中的单个ALL细胞由光片激发。我们的无标记微流控细胞术从B/T亚型的单个ALL细胞中获取大数据二维(2D)光散射模式。开发了一种名为Inception V3 - SIFT(尺度不变特征变换)-散射网络(ISSC - Net)的深度学习框架,它能够对T - ALL和B - ALL细胞系细胞进行高精度分类,准确率为0.993±0.003。我们基于深度学习的二维光散射流式细胞术在未染色ALL的自动、准确亚型分类方面具有广阔前景。

相似文献

1
Deep learning-based light scattering microfluidic cytometry for label-free acute lymphocytic leukemia classification.
Biomed Opt Express. 2020 Oct 23;11(11):6674-6686. doi: 10.1364/BOE.405557. eCollection 2020 Nov 1.
2
Light scattering pattern specific convolutional network static cytometry for label-free classification of cervical cells.
Cytometry A. 2021 Jun;99(6):610-621. doi: 10.1002/cyto.a.24349. Epub 2021 Apr 22.
3
Label-free light-sheet microfluidic cytometry for the automatic identification of senescent cells.
Biomed Opt Express. 2018 Mar 14;9(4):1692-1703. doi: 10.1364/BOE.9.001692. eCollection 2018 Apr 1.
7
2D light scattering static cytometry for label-free single cell analysis with submicron resolution.
Cytometry A. 2015 Nov;87(11):1029-37. doi: 10.1002/cyto.a.22713. Epub 2015 Jun 26.
9
Pattern recognition cytometry for label-free cell classification by 2D light scattering measurements.
Opt Express. 2015 Oct 19;23(21):27558-65. doi: 10.1364/OE.23.027558.
10
Light-sheet-based 2D light scattering cytometry for label-free characterization of senescent cells.
Biomed Opt Express. 2016 Nov 16;7(12):5170-5181. doi: 10.1364/BOE.7.005170. eCollection 2016 Dec 1.

引用本文的文献

1
Electrochemical-assisted scattering imaging system for lymphoma cell classification using machine learning.
Biomed Opt Express. 2025 Jul 29;16(8):3424-3436. doi: 10.1364/BOE.569911. eCollection 2025 Aug 1.
3
Siamese deep learning video flow cytometry for automatic and label-free clinical cervical cancer cell analysis.
Biomed Opt Express. 2024 Mar 4;15(4):2063-2077. doi: 10.1364/BOE.510022. eCollection 2024 Apr 1.
4
Unknown cell class distinction via neural network based scattering snapshot recognition.
Biomed Opt Express. 2023 Sep 6;14(10):5060-5074. doi: 10.1364/BOE.492028. eCollection 2023 Oct 1.
5
Three-dimensional deep regression-based light scattering imaging system for nanoscale exosome analysis.
Biomed Opt Express. 2023 Apr 18;14(5):2055-2067. doi: 10.1364/BOE.483791. eCollection 2023 May 1.
7
Multi-Cohort Transcriptomic Subtyping of B-Cell Acute Lymphoblastic Leukemia.
Int J Mol Sci. 2022 Apr 20;23(9):4574. doi: 10.3390/ijms23094574.

本文引用的文献

1
2
Deep learning in single-molecule microscopy: fundamentals, caveats, and recent developments [Invited].
Biomed Opt Express. 2020 Feb 27;11(3):1633-1661. doi: 10.1364/BOE.386361. eCollection 2020 Mar 1.
3
Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia.
Int J Mol Sci. 2020 Feb 5;21(3):1054. doi: 10.3390/ijms21031054.
4
Deep Learning-Based Single-Cell Optical Image Studies.
Cytometry A. 2020 Mar;97(3):226-240. doi: 10.1002/cyto.a.23973. Epub 2020 Jan 25.
5
Applications and efficiency of flow cytometry for leukemia diagnostics.
Expert Rev Mol Diagn. 2019 Dec;19(12):1089-1097. doi: 10.1080/14737159.2019.1691918. Epub 2019 Nov 16.
6
Mutual Information based hybrid model and deep learning for Acute Lymphocytic Leukemia detection in single cell blood smear images.
Comput Methods Programs Biomed. 2019 Oct;179:104987. doi: 10.1016/j.cmpb.2019.104987. Epub 2019 Jul 15.
7
End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography.
Nat Med. 2019 Jun;25(6):954-961. doi: 10.1038/s41591-019-0447-x. Epub 2019 May 20.
8
Multiparameter flow cytometry applications in the diagnosis of mixed phenotype acute leukemia.
Cytometry B Clin Cytom. 2019 May;96(3):183-194. doi: 10.1002/cyto.b.21783. Epub 2019 Apr 29.
9
CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning.
Biomed Opt Express. 2019 Jan 17;10(2):622-641. doi: 10.1364/BOE.10.000622. eCollection 2019 Feb 1.
10
Deep learning enables cross-modality super-resolution in fluorescence microscopy.
Nat Methods. 2019 Jan;16(1):103-110. doi: 10.1038/s41592-018-0239-0. Epub 2018 Dec 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验