Kirch Christoph, Gollo Leonardo L
QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
Queensland University of Technology, Brisbane, QLD, Australia.
PeerJ. 2020 Nov 24;8:e10250. doi: 10.7717/peerj.10250. eCollection 2020.
The vast tree-like dendritic structure of neurons allows them to receive and integrate input from many neurons. A wide variety of neuronal morphologies exist, however, their role in dendritic integration, and how it shapes the response of the neuron, is not yet fully understood. Here, we study the evolution and interactions of dendritic spikes in excitable neurons with complex real branch structures. We focus on dozens of digitally reconstructed illustrative neurons from the online repository NeuroMorpho.org, which contains over 130,000 neurons. Yet, our methods can be promptly extended to any other neuron. This approach allows us to estimate and map specific and heterogeneous patterns of activity observed across extensive dendritic trees with thousands of compartments. We propose a classification of neurons based on the location of the soma (centrality) and the number of branches connected to the soma. These are key topological factors in determining the neuron's energy consumption, firing rate, and the dynamic range, which quantifies the range in synaptic input rate that can be reliably encoded by the neuron's firing rate. Moreover, we find that bifurcations, the structural building blocks of complex dendrites, play a major role in increasing the dynamic range of neurons. Our results provide a better understanding of the effects of neuronal morphology in the diversity of neuronal dynamics and function.
神经元庞大的树状树突结构使其能够接收并整合来自许多神经元的输入。然而,尽管存在各种各样的神经元形态,但其在树突整合中的作用以及它如何塑造神经元的反应,尚未得到充分理解。在这里,我们研究具有复杂真实分支结构的可兴奋神经元中树突棘的演化和相互作用。我们专注于来自在线数据库NeuroMorpho.org的数十个经过数字重建的具有代表性的神经元,该数据库包含超过130,000个神经元。然而,我们的方法可以迅速扩展到任何其他神经元。这种方法使我们能够估计并绘制在具有数千个隔室的广泛树突树上观察到的特定且异质的活动模式。我们根据胞体的位置(中心性)和连接到胞体的分支数量对神经元进行分类。这些是决定神经元能量消耗、 firing率和动态范围的关键拓扑因素,动态范围量化了可以由神经元的 firing率可靠编码的突触输入率范围。此外,我们发现分叉作为复杂树突的结构组成部分,在增加神经元的动态范围方面起着重要作用。我们的结果有助于更好地理解神经元形态在神经元动力学和功能多样性中的作用。