Suppr超能文献

在具有多层神经网络结构的混合神经假体系统中次优解决执行器冗余问题。

Sub-optimally Solving Actuator Redundancy in a Hybrid Neuroprosthetic System with a Multi-layer Neural Network Structure.

作者信息

Bao Xuefeng, Mao Zhi-Hong, Munro Paul, Sun Ziyue, Sharma Nitin

机构信息

Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA,USA 15261.

Department of Electrical and Computer Engineering and the Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA,USA 15261.

出版信息

Int J Intell Robot Appl. 2019 Sep;3(3):298-313. doi: 10.1007/s41315-019-00100-8. Epub 2019 Aug 14.

Abstract

Functional electrical stimulation (FES) has recently been proposed as a supplementary torque assist in lower-limb powered exoskeletons for persons with paraplegia. In the combined system, also known as a hybrid neuroprosthesis, both FES-assist and the exoskeleton act to generate lower-limb torques to achieve standing and walking functions. Due to this actuator redundancy, we are motivated to optimally allocate FES-assist and exoskeleton torque based on a performance index that penalizes FES overuse to minimize muscle fatigue while also minimizing regulation or tracking errors. Traditional optimal control approaches need a system model to optimize; however, it is often difficult to formulate a musculoskeletal model that accurately predicts muscle responses due to FES. In this paper, we use a novel identification and control structure that contains a recurrent neural network (RNN) and several feedforward neural networks (FNNs). The RNN is trained by supervised learning to identify the system dynamics, while the FNNs are trained by a reinforcement learning method to provide sub-optimal control actions. The output layer of each FNN has its unique activation functions, so that the asymmetric constraint of FES and the symmetric constraint of exoskeleton motor control input can be realized. This new structure is experimentally validated on a seated human participant using a single joint hybrid neuroprosthesis.

摘要

功能性电刺激(FES)最近被提议作为一种辅助扭矩,用于截瘫患者的下肢动力外骨骼。在这个组合系统中,也被称为混合神经假体,FES辅助和外骨骼都作用于产生下肢扭矩,以实现站立和行走功能。由于这种执行器冗余,我们有动力基于一个性能指标来优化分配FES辅助和外骨骼扭矩,该指标会惩罚FES的过度使用,以尽量减少肌肉疲劳,同时也尽量减少调节或跟踪误差。传统的最优控制方法需要一个系统模型来进行优化;然而,由于FES,通常很难建立一个准确预测肌肉反应的肌肉骨骼模型。在本文中,我们使用了一种新颖的识别和控制结构,该结构包含一个递归神经网络(RNN)和几个前馈神经网络(FNN)。RNN通过监督学习进行训练以识别系统动态,而FNN通过强化学习方法进行训练以提供次优控制动作。每个FNN的输出层都有其独特的激活函数,从而可以实现FES的不对称约束和外骨骼电机控制输入的对称约束。这种新结构在一名坐着的人类参与者身上使用单关节混合神经假体进行了实验验证。

相似文献

1
Sub-optimally Solving Actuator Redundancy in a Hybrid Neuroprosthetic System with a Multi-layer Neural Network Structure.
Int J Intell Robot Appl. 2019 Sep;3(3):298-313. doi: 10.1007/s41315-019-00100-8. Epub 2019 Aug 14.
2
A Control Scheme That Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking Neuroprosthesis: Theory and Experiments.
Front Neurosci. 2018 Apr 10;12:159. doi: 10.3389/fnins.2018.00159. eCollection 2018.
3
Model-Based Dynamic Control Allocation in a Hybrid Neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):224-232. doi: 10.1109/TNSRE.2017.2756023. Epub 2017 Sep 22.
4
Shared Control of a Powered Exoskeleton and Functional Electrical Stimulation Using Iterative Learning.
Front Robot AI. 2021 Nov 3;8:711388. doi: 10.3389/frobt.2021.711388. eCollection 2021.
5
Using Person-Specific Muscle Fatigue Characteristics to Optimally Allocate Control in a Hybrid Exoskeleton - Preliminary Results.
IEEE Trans Med Robot Bionics. 2020 May;2(2):226-235. doi: 10.1109/TMRB.2020.2977416. Epub 2020 Mar 2.
6
A Tube-based Model Predictive Control Method to Regulate a Knee Joint with Functional Electrical Stimulation and Electric Motor Assist.
IEEE Trans Control Syst Technol. 2021 Sep;29(5):2180-2191. doi: 10.1109/tcst.2020.3034850. Epub 2020 Nov 16.
7
8
Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.
Front Neurosci. 2017 Dec 21;11:725. doi: 10.3389/fnins.2017.00725. eCollection 2017.
9
An Approach for the Cooperative Control of FES With a Powered Exoskeleton During Level Walking for Persons With Paraplegia.
IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):455-66. doi: 10.1109/TNSRE.2015.2421052. Epub 2015 Apr 23.
10
Hybrid FES-exoskeleton control: Using MPC to distribute actuation for elbow and wrist movements.
Front Neurorobot. 2023 Apr 6;17:1127783. doi: 10.3389/fnbot.2023.1127783. eCollection 2023.

引用本文的文献

1
A Tube-based Model Predictive Control Method to Regulate a Knee Joint with Functional Electrical Stimulation and Electric Motor Assist.
IEEE Trans Control Syst Technol. 2021 Sep;29(5):2180-2191. doi: 10.1109/tcst.2020.3034850. Epub 2020 Nov 16.

本文引用的文献

1
Model Predictive Control of a Feedback-Linearized Hybrid Neuroprosthetic System With a Barrier Penalty.
J Comput Nonlinear Dyn. 2019 Oct 1;14(10):101009-1010097. doi: 10.1115/1.4042903. Epub 2019 Sep 9.
2
A Control Scheme That Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking Neuroprosthesis: Theory and Experiments.
Front Neurosci. 2018 Apr 10;12:159. doi: 10.3389/fnins.2018.00159. eCollection 2018.
3
Model-Based Dynamic Control Allocation in a Hybrid Neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2018 Jan;26(1):224-232. doi: 10.1109/TNSRE.2017.2756023. Epub 2017 Sep 22.
4
Training an Actor-Critic Reinforcement Learning Controller for Arm Movement Using Human-Generated Rewards.
IEEE Trans Neural Syst Rehabil Eng. 2017 Oct;25(10):1892-1905. doi: 10.1109/TNSRE.2017.2700395. Epub 2017 May 2.
5
Mastering the game of Go with deep neural networks and tree search.
Nature. 2016 Jan 28;529(7587):484-9. doi: 10.1038/nature16961.
6
A Muscle Synergy-Inspired Adaptive Control Scheme for a Hybrid Walking Neuroprosthesis.
Front Bioeng Biotechnol. 2015 Dec 21;3:203. doi: 10.3389/fbioe.2015.00203. eCollection 2015.
7
An Approach for the Cooperative Control of FES With a Powered Exoskeleton During Level Walking for Persons With Paraplegia.
IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):455-66. doi: 10.1109/TNSRE.2015.2421052. Epub 2015 Apr 23.
8
A semi-active hybrid neuroprosthesis for restoring lower limb function in paraplegics.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2557-60. doi: 10.1109/EMBC.2014.6944144.
9
Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
J Neuroeng Rehabil. 2014 Mar 4;11:27. doi: 10.1186/1743-0003-11-27.
10
Dynamic Optimization of FES and Orthosis-Based Walking Using Simple Models.
IEEE Trans Neural Syst Rehabil Eng. 2014 Jan;22(1):114-26. doi: 10.1109/TNSRE.2013.2280520. Epub 2013 Oct 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验