Mezher Rawad, Ghalbouni Joe, Dgheim Joseph, Markham Damian
Laboratoire d 'Informatique de Paris 6, CNRS, Sorbonne Université, 4 Place Jussieu, 75252 Paris CEDEX 05, France.
Laboratoire de Physique Appliquée, Faculty of Sciences 2, Lebanese University, Fanar 90656, Lebanon.
Entropy (Basel). 2020 Jan 12;22(1):92. doi: 10.3390/e22010092.
The capacity to randomly pick a unitary across the whole unitary group is a powerful tool across physics and quantum information. A unitary -design is designed to tackle this challenge in an efficient way, yet constructions to date rely on heavy constraints. In particular, they are composed of ensembles of unitaries which, for technical reasons, must contain inverses and whose entries are algebraic. In this work, we reduce the requirements for generating an ε -approximate unitary -design. To do so, we first construct a specific -qubit random quantum circuit composed of a sequence of randomly chosen 2-qubit gates, chosen from a set of unitaries which is approximately universal on U ( 4 ) , yet need not contain unitaries and their inverses nor are in general composed of unitaries whose entries are algebraic; dubbed r e l a x e d seed. We then show that this relaxed seed, when used as a basis for our construction, gives rise to an ε -approximate unitary -design efficiently, where the depth of our random circuit scales as p o l y ( n , t , l o g ( 1 / ε ) ) , thereby overcoming the two requirements which limited previous constructions. We suspect the result found here is not optimal and can be improved; particularly because the number of gates in the relaxed seeds introduced here grows with and . We conjecture that constant sized seeds such as those which are usually present in the literature are sufficient.
在整个酉群中随机选取一个酉矩阵的能力是物理学和量子信息领域的一个强大工具。酉设计旨在以一种有效的方式应对这一挑战,但迄今为止的构造依赖于严格的约束条件。特别是,它们由酉矩阵的集合组成,由于技术原因,这些集合必须包含逆矩阵且其元素是代数的。在这项工作中,我们降低了生成一个ε近似酉设计的要求。为此,我们首先构建一个特定的量子比特随机量子电路,该电路由一系列从一组酉矩阵中随机选择的双量子比特门组成,这组酉矩阵在U(4)上近似通用,但不需要包含酉矩阵及其逆矩阵,并且一般也不由其元素是代数的酉矩阵组成;我们将其称为松弛种子。然后我们证明,当将这个松弛种子用作我们构造的基础时,可以有效地产生一个ε近似酉设计,其中我们随机电路的深度按poly(n, t, log(1/ε))缩放,从而克服了限制先前构造的两个要求。我们怀疑这里发现的结果不是最优的,可以改进;特别是因为这里引入的松弛种子中的门的数量随着 和 增长。我们推测,文献中通常出现的恒定大小的种子就足够了。