Suppr超能文献

一种基于多重雷尼熵的车联网入侵检测系统

A Multiple Rényi Entropy Based Intrusion Detection System for Connected Vehicles.

作者信息

Yu Ki-Soon, Kim Sung-Hyun, Lim Dae-Woon, Kim Young-Sik

机构信息

Major in Information Communication Engineering, Dongguk University, Seoul 04620, Korea.

School of Computing, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.

出版信息

Entropy (Basel). 2020 Feb 6;22(2):186. doi: 10.3390/e22020186.

Abstract

In this paper, we propose an intrusion detection system based on the estimation of the Rényi entropy with multiple orders. The Rényi entropy is a generalized notion of entropy that includes the Shannon entropy and the min-entropy as special cases. In 2018, Kim proposed an efficient estimation method for the Rényi entropy with an arbitrary real order α . In this work, we utilize this method to construct a multiple order, Rényi entropy based intrusion detection system (IDS) for vehicular systems with various network connections. The proposed method estimates the Rényi entropies simultaneously with three distinct orders, two, three, and four, based on the controller area network (CAN)-IDs of consecutively generated frames. The collected frames are split into blocks with a fixed number of frames, and the entropies are evaluated based on these blocks. For a more accurate estimation against each type of attack, we also propose a retrospective sliding window method for decision of attacks based on the estimated entropies. For fair comparison, we utilized the CAN-ID attack data set generated by a research team from Korea University. Our results show that the proposed method can show the false negative and positive errors of less than 1% simultaneously.

摘要

在本文中,我们提出了一种基于多阶雷尼熵估计的入侵检测系统。雷尼熵是熵的一种广义概念,它将香农熵和最小熵作为特殊情况包含在内。2018年,金提出了一种针对任意实阶α的雷尼熵的高效估计方法。在这项工作中,我们利用该方法为具有各种网络连接的车辆系统构建一个基于多阶雷尼熵的入侵检测系统(IDS)。所提出的方法基于连续生成帧的控制器局域网(CAN)ID,同时估计三个不同阶数(二、三、四)的雷尼熵。收集到的帧被分割成具有固定帧数的块,并基于这些块评估熵。为了针对每种攻击类型进行更准确的估计,我们还提出了一种基于估计熵的用于攻击决策的回顾性滑动窗口方法。为了进行公平比较,我们使用了韩国大学一个研究团队生成的CAN-ID攻击数据集。我们的结果表明,所提出的方法能够同时显示出小于1%的误报和漏报错误。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07f9/7516617/e806a84f95d0/entropy-22-00186-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验