Zhou Longwen
Department of Physics, College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China.
Entropy (Basel). 2020 Jul 7;22(7):746. doi: 10.3390/e22070746.
Periodically driven non-Hermitian systems could possess exotic nonequilibrium phases with unique topological, dynamical, and transport properties. In this work, we introduce an experimentally realizable two-leg ladder model subjecting to both time-periodic quenches and non-Hermitian effects, which belongs to an extended CII symmetry class. Due to the interplay between drivings and nonreciprocity, rich non-Hermitian Floquet topological phases emerge in the system, with each of them characterized by a pair of even-integer topological invariants ( w 0 , w π ) ∈ 2 Z × 2 Z . Under the open boundary condition, these invariants further predict the number of zero- and π -quasienergy modes localized around the edges of the system. We finally construct a generalized version of the mean chiral displacement, which could be employed as a dynamical probe to the topological invariants of non-Hermitian Floquet phases in the CII symmetry class. Our work thus introduces a new type of non-Hermitian Floquet topological matter, and further reveals the richness of topology and dynamics in driven open systems.
周期性驱动的非厄米系统可能具有具有独特拓扑、动力学和输运性质的奇异非平衡相。在这项工作中,我们引入了一个实验上可实现的两腿梯子模型,该模型同时受到时间周期性猝灭和非厄米效应的影响,它属于扩展的CII对称类。由于驱动与非互易性之间的相互作用,系统中出现了丰富的非厄米弗洛凯拓扑相,每个相都由一对偶数整数拓扑不变量((w_0, w_π) \in 2Z \times 2Z)表征。在开放边界条件下,这些不变量进一步预测了局域在系统边缘的零能和(π)准能模式的数量。我们最终构建了平均手性位移的广义版本,它可以用作探测CII对称类中非厄米弗洛凯相拓扑不变量的动力学探针。我们的工作因此引入了一种新型的非厄米弗洛凯拓扑物质,并进一步揭示了驱动开放系统中拓扑和动力学的丰富性。