Suppr超能文献

用于光动力消融宫颈癌细胞的各向异性铜铁氧体-聚合物核壳纳米颗粒的制备

Fabrication of Anisotropic Cu Ferrite-Polymer Core-Shell Nanoparticles for Photodynamic Ablation of Cervical Cancer Cells.

作者信息

Kuo Shuo-Hsiu, Wu Po-Ting, Huang Jing-Yin, Chiu Chin-Pao, Yu Jiashing, Liao Mei-Yi

机构信息

Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.

Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan.

出版信息

Nanomaterials (Basel). 2020 Dec 4;10(12):2429. doi: 10.3390/nano10122429.

Abstract

In this work we developed methylene blue-immobilized copper-iron nanoparticles (MB-CuFe NPs) through a facile one-step hydrothermal reaction to achieve a better phototherapeutic effect. The Fe/Cu ratio of the CuFe NPs was controllable by merely changing the loading amount of iron precursor concentration. The CuFe NPs could serve as a Fenton catalyst to convert hydrogen peroxide (HO) into reactive oxygen species (ROS), while the superparamagnetic properties also suggest magnetic resonance imaging (MRI) potential. Furthermore, the Food and Drug Administration (FDA)-approved MB photosensitizer could strongly adsorb onto the surface of CuFe NPs to facilitate the drug delivery into cells and improve the photodynamic therapy at 660 nm via significant generation of singlet oxygen species, leading to enhanced cancer cell-damaging efficacy. An MTT (thiazolyl blue tetrazolium bromide) assay proved the low cytotoxicity of the CuFe NPs to cervical cancer cells (HeLa cells), namely above 80% at 25 ppm of the sample dose. A slight dissolution of Cu and Fe ions from the CuFe NPs in an acidic environment was obtained, providing direct evidence for CuFe NPs being degradable without the risk of long-term retention in the body. Moreover, the tremendous photo-to-thermal conversion of CuFe NPs was examined, which might be combined with photodynamic therapy (PDT) for promising development in the depletion of cancer cells after a single pulse of deep-red light irradiation at high laser power.

摘要

在这项工作中,我们通过简便的一步水热反应制备了固定有亚甲蓝的铜铁纳米颗粒(MB-CuFe NPs),以实现更好的光热治疗效果。通过仅改变铁前驱体浓度的负载量,就可以控制CuFe NPs的铁/铜比例。CuFe NPs可以作为芬顿催化剂,将过氧化氢(H₂O₂)转化为活性氧(ROS),同时其超顺磁性也显示出磁共振成像(MRI)的潜力。此外,美国食品药品监督管理局(FDA)批准的MB光敏剂可以强烈吸附在CuFe NPs的表面,促进药物进入细胞,并通过大量产生单线态氧显著改善660nm处的光动力疗法,从而提高癌细胞损伤疗效。MTT(噻唑蓝四氮唑溴盐)试验证明了CuFe NPs对宫颈癌细胞(HeLa细胞)的低细胞毒性,即在25ppm的样品剂量下细胞存活率高于80%。在酸性环境中,CuFe NPs会轻微溶解出铜离子和铁离子,这为CuFe NPs可降解且不会在体内长期留存提供了直接证据。此外,还研究了CuFe NPs巨大的光热转换性能,在高激光功率下进行单脉冲深红色光照射后,其可与光动力疗法(PDT)结合,有望在癌细胞清除方面取得进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8103/7761902/0ac194b026ed/nanomaterials-10-02429-g001.jpg

相似文献

3
Elucidation of one step synthesis of PEGylated CuFe bimetallic nanoparticles. Antimicrobial activity of CuFe@PEG vs Cu@PEG.
J Inorg Biochem. 2017 Dec;177:159-170. doi: 10.1016/j.jinorgbio.2017.09.014. Epub 2017 Sep 23.
4
Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells.
ACS Appl Mater Interfaces. 2015 Jan 14;7(1):432-41. doi: 10.1021/am5064298. Epub 2014 Dec 19.
5
6
Degradable NIR-PTT Nanoagents with a Potential Cu@CuO@Polymer Structure.
ACS Appl Mater Interfaces. 2018 Feb 14;10(6):5161-5174. doi: 10.1021/acsami.7b15109. Epub 2018 Feb 2.
7
Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy.
Acta Biomater. 2020 May;108:273-284. doi: 10.1016/j.actbio.2020.03.027. Epub 2020 Mar 21.
8
Methylene Blue Loaded Cu-Tryptone Complex Nanoparticles: A New Glutathione-Reduced Enhanced Photodynamic Therapy Nanoplatform.
ACS Biomater Sci Eng. 2019 Feb 11;5(2):1016-1022. doi: 10.1021/acsbiomaterials.8b01398. Epub 2019 Feb 1.

引用本文的文献

1
Advances in Photodynamic Treatment of Precancerous and Cancerous Gynecological Diseases.
Cancers (Basel). 2025 Jul 22;17(15):2421. doi: 10.3390/cancers17152421.
2
Cancer metastasis: molecular mechanisms and therapeutic interventions.
Mol Biomed. 2025 Apr 7;6(1):20. doi: 10.1186/s43556-025-00261-y.
3
Unveiling the role of sintering temperatures in the physical properties of Cu-Mg ferrite nanoparticles for photocatalytic application.
Heliyon. 2024 Dec 2;10(23):e40771. doi: 10.1016/j.heliyon.2024.e40771. eCollection 2024 Dec 15.
5
(Nano)biotechnological approaches in the treatment of cervical cancer: integration of engineering and biology.
Front Immunol. 2024 Sep 13;15:1461894. doi: 10.3389/fimmu.2024.1461894. eCollection 2024.
6
Magnetic nanoparticles and possible synergies with cold atmospheric plasma for cancer treatment.
RSC Adv. 2024 Sep 12;14(40):29039-29051. doi: 10.1039/d4ra03837a.
7
Bells and Whistles on Fertilizers: Molecular Hands to Hang Nanoporous Foliar Fertilizer Reservoirs.
ACS Omega. 2024 Jun 5;9(24):25870-25878. doi: 10.1021/acsomega.3c09895. eCollection 2024 Jun 18.
8
Enhancement of magnetization and optical properties of CuFeO/ZnFeO core/shell nanostructure.
Sci Rep. 2024 Mar 23;14(1):6935. doi: 10.1038/s41598-024-57134-7.
9
[Surface modification of multifunctional ferrite magnetic nanoparticles and progress in biomedicine].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Apr 25;40(2):378-383. doi: 10.7507/1001-5515.202209056.

本文引用的文献

1
Thermosensitive Biodegradable Copper Sulfide Nanoparticles for Real-Time Multispectral Optoacoustic Tomography.
ACS Appl Bio Mater. 2019 Aug 19;2(8):3203-3211. doi: 10.1021/acsabm.9b00133. Epub 2019 Jul 4.
2
Size-isolation of superparamagnetic iron oxide nanoparticles improves MRI, MPI and hyperthermia performance.
J Nanobiotechnology. 2020 Jan 28;18(1):22. doi: 10.1186/s12951-020-0580-1.
5
A facile method for the synthesis of copper-cysteamine nanoparticles and study of ROS production for cancer treatment.
J Mater Chem B. 2019 Nov 14;7(42):6630-6642. doi: 10.1039/c9tb01566c. Epub 2019 Oct 8.
6
A pH-responsive platform combining chemodynamic therapy with limotherapy for simultaneous bioimaging and synergistic cancer therapy.
Biomaterials. 2019 Sep;216:119254. doi: 10.1016/j.biomaterials.2019.119254. Epub 2019 Jun 5.
7
Reactive Oxygen Species (ROS)-Based Nanomedicine.
Chem Rev. 2019 Apr 24;119(8):4881-4985. doi: 10.1021/acs.chemrev.8b00626. Epub 2019 Apr 11.
8
Methylene-Blue-Encapsulated Liposomes as Photodynamic Therapy Nano Agents for Breast Cancer Cells.
Nanomaterials (Basel). 2018 Dec 23;9(1):14. doi: 10.3390/nano9010014.
9
Sub-10 nm CuFeS cube for magnetic resonance imaging-guided photothermal therapy of cancer.
Int J Nanomedicine. 2018 Nov 26;13:7987-7996. doi: 10.2147/IJN.S181056. eCollection 2018.
10
Chemodynamic Therapy: Tumour Microenvironment-Mediated Fenton and Fenton-like Reactions.
Angew Chem Int Ed Engl. 2019 Jan 21;58(4):946-956. doi: 10.1002/anie.201805664. Epub 2018 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验