Department of Methodology and Statistics, Tilburg University, Tilburg, the Netherlands.
Faculty of Social Sciences, Utrecht University, Utrecht, the Netherlands.
PLoS Biol. 2020 Dec 9;18(12):e3000937. doi: 10.1371/journal.pbio.3000937. eCollection 2020 Dec.
Researchers face many, often seemingly arbitrary, choices in formulating hypotheses, designing protocols, collecting data, analyzing data, and reporting results. Opportunistic use of "researcher degrees of freedom" aimed at obtaining statistical significance increases the likelihood of obtaining and publishing false-positive results and overestimated effect sizes. Preregistration is a mechanism for reducing such degrees of freedom by specifying designs and analysis plans before observing the research outcomes. The effectiveness of preregistration may depend, in part, on whether the process facilitates sufficiently specific articulation of such plans. In this preregistered study, we compared 2 formats of preregistration available on the OSF: Standard Pre-Data Collection Registration and Prereg Challenge Registration (now called "OSF Preregistration," http://osf.io/prereg/). The Prereg Challenge format was a "structured" workflow with detailed instructions and an independent review to confirm completeness; the "Standard" format was "unstructured" with minimal direct guidance to give researchers flexibility for what to prespecify. Results of comparing random samples of 53 preregistrations from each format indicate that the "structured" format restricted the opportunistic use of researcher degrees of freedom better (Cliff's Delta = 0.49) than the "unstructured" format, but neither eliminated all researcher degrees of freedom. We also observed very low concordance among coders about the number of hypotheses (14%), indicating that they are often not clearly stated. We conclude that effective preregistration is challenging, and registration formats that provide effective guidance may improve the quality of research.
研究人员在形成假设、设计方案、收集数据、分析数据和报告结果时面临着许多选择,这些选择往往看似随意。机会主义地利用“研究人员自由度”来获得统计学意义,会增加获得和发表假阳性结果以及高估效应大小的可能性。预先注册是一种通过在观察研究结果之前指定设计和分析计划来减少这种自由度的机制。预先注册的有效性可能部分取决于该过程是否能够充分具体地阐明这些计划。在这项预先注册的研究中,我们比较了 OSF 上提供的两种预先注册格式:标准预数据收集注册和预先注册挑战注册(现在称为“OSF 预先注册”,http://osf.io/prereg/)。预先注册挑战格式是一种具有详细说明和独立审查以确认完整性的“结构化”工作流程;“标准”格式是“非结构化”的,几乎没有直接的指导,为研究人员提供了灵活的预设空间。对来自每种格式的 53 个预先注册的随机样本进行比较的结果表明,“结构化”格式比“非结构化”格式更好地限制了研究人员自由度的机会主义使用(克里夫德尔塔 = 0.49),但都没有消除所有研究人员自由度。我们还观察到,编码员对假设数量的一致性非常低(14%),这表明假设通常没有明确说明。我们得出的结论是,有效的预先注册具有挑战性,提供有效指导的注册格式可能会提高研究质量。