Suppr超能文献

Fi 分数:一种用于描述蛋白质拓扑结构并辅助药物发现研究的新方法。

Fi-score: a novel approach to characterise protein topology and aid in drug discovery studies.

机构信息

Galapagos NV, Mechelen, Belgium.

Galapagos BV, Leiden, The Netherlands.

出版信息

J Biomol Struct Dyn. 2022 Jun;40(9):4197-4207. doi: 10.1080/07391102.2020.1854859. Epub 2020 Dec 10.

Abstract

Target evaluation is at the centre of rational drug design and biologics development. In order to successfully engineer antibodies, T-cell receptors or small molecules it is necessary to identify and characterise potential binding or contact sites on therapeutically relevant target proteins. Currently, there are numerous challenges in achieving a better docking precision as well as characterising relevant sites. We devised a first-of-its-kind protein fingerprinting approach based on the dihedral angle and B-factor distribution to probe binding sites and sites of structural importance. Our derived Fi-score can be used to classify protein regions or individual structural subsets of interest and the described scoring system could be integrated into other discovery pipelines, such as protein classification databases, or applied to investigate new targets. We further demonstrated how our method can be integrated into machine learning Gaussian mixture models to predict different structural elements. Fi-score, in combination with other biophysical analytical methods depending on the research goals, could help to classify and systematically analyse not only targets but also drug candidates that bind to specific sites. The described methodology could greatly improve pre-screening stage, target selection and drug repurposing efforts in finding other matching targets. HIGHLIGHTSDescription and derivation of a first-of-its-kind protein fingerprinting method using B-factors and dihedral angles.Derived Fi-score allows to characterise the whole protein or selected regions of interest.Demonstration how machine learning using Gaussian mixture models on Fi-scores captures and allows to predict functional protein topology elements.Fi-score is a novel method to help evaluate therapeutic targets and engineer effective biologics.Communicated by Ramaswamy H. Sarma.

摘要

目标评估是合理药物设计和生物制剂开发的核心。为了成功设计抗体、T 细胞受体或小分子,有必要鉴定和描述治疗相关靶蛋白上的潜在结合或接触部位。目前,在提高对接精度和描述相关部位方面存在许多挑战。我们设计了一种首创的基于二面角和 B 因子分布的蛋白质指纹图谱方法来探测结合部位和结构重要部位。我们推导出的 Fi-score 可用于对感兴趣的蛋白质区域或单个结构子集进行分类,并且可以将描述的评分系统集成到其他发现管道中,例如蛋白质分类数据库,或应用于研究新的靶标。我们进一步展示了如何将我们的方法集成到机器学习高斯混合模型中,以预测不同的结构元素。Fi-score 结合其他取决于研究目标的生物物理分析方法,不仅可以帮助分类和系统地分析靶标,还可以分析与特定部位结合的候选药物。所描述的方法可以大大提高筛选前阶段、靶标选择和药物再利用的效率,以寻找其他匹配的靶标。要点:描述和推导一种首创的蛋白质指纹图谱方法,使用 B 因子和二面角。推导出的 Fi-score 可用于描述整个蛋白质或选定的感兴趣区域。展示如何使用 Fi-score 上的高斯混合模型进行机器学习来捕获和预测功能蛋白质拓扑元素。Fi-score 是一种帮助评估治疗靶标和设计有效生物制剂的新方法。由 Ramaswamy H. Sarma 传达。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验