Suppr超能文献

模拟 FUS 蛋白凝聚物的改进粗粒化模型。

Simulation of FUS Protein Condensates with an Adapted Coarse-Grained Model.

机构信息

Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany.

Département de Chimie, École Normale Supérieure, PSL University, 75005 Paris, France.

出版信息

J Chem Theory Comput. 2021 Jan 12;17(1):525-537. doi: 10.1021/acs.jctc.0c01064. Epub 2020 Dec 13.

Abstract

Disordered proteins and nucleic acids can condense into droplets that resemble the membraneless organelles observed in living cells. MD simulations offer a unique tool to characterize the molecular interactions governing the formation of these biomolecular condensates, their physicochemical properties, and the factors controlling their composition and size. However, biopolymer condensation depends sensitively on the balance between different energetic and entropic contributions. Here, we develop a general strategy to fine-tune the potential energy function for molecular dynamics simulations of biopolymer phase separation. We rebalance protein-protein interactions against solvation and entropic contributions to match the excess free energy of transferring proteins between dilute solution and condensate. We illustrate this formalism by simulating liquid droplet formation of the FUS low-complexity domain (LCD) with a rebalanced MARTINI model. By scaling the strength of the nonbonded interactions in the coarse-grained MARTINI potential energy function, we map out a phase diagram in the plane of protein concentration and interaction strength. Above a critical scaling factor of α ≈ 0.6, FUS-LCD condensation is observed, where α = 1 and 0 correspond to full and repulsive interactions in the MARTINI model. For a scaling factor α = 0.65, we recover experimental densities of the dilute and dense phases, and thus the excess protein transfer free energy into the droplet and the saturation concentration where FUS-LCD condenses. In the region of phase separation, we simulate FUS-LCD droplets of four different sizes in stable equilibrium with the dilute phase and slabs of condensed FUS-LCD for tens of microseconds, and over one millisecond in aggregate. We determine surface tensions in the range of 0.01-0.4 mN/m from the fluctuations of the droplet shape and from the capillary-wave-like broadening of the interface between the two phases. From the dynamics of the protein end-to-end distance, we estimate shear viscosities from 0.001 to 0.02 Pa s for the FUS-LCD droplets with scaling factors α in the range of 0.625-0.75, where we observe liquid droplets. Significant hydration of the interior of the droplets keeps the proteins mobile and the droplets fluid.

摘要

无序的蛋白质和核酸可以凝聚成类似无膜细胞器的液滴,这些细胞器在活细胞中被观察到。分子动力学模拟为研究控制这些生物分子凝聚物形成、理化性质以及控制其组成和大小的因素的分子相互作用提供了一种独特的工具。然而,生物聚合物的凝聚高度依赖于不同能量和熵贡献之间的平衡。在这里,我们开发了一种精细调整分子动力学模拟生物聚合物相分离的势能函数的通用策略。我们重新平衡蛋白质-蛋白质相互作用与溶剂化和熵贡献,以匹配将蛋白质从稀溶液转移到凝聚物的过剩自由能。我们通过用重新平衡的 MARTINI 模型模拟 FUS 低复杂度结构域 (LCD) 的液滴形成来说明这一形式。通过缩放粗粒化 MARTINI 势能函数中非键相互作用的强度,我们在蛋白质浓度和相互作用强度的平面上绘制出一个相图。在临界标度因子α≈0.6 以上,观察到 FUS-LCD 凝聚,其中α=1 和 0 分别对应于 MARTINI 模型中的完全和排斥相互作用。对于标度因子α=0.65,我们恢复了稀相和密相的实验密度,因此将蛋白质过剩转移自由能带入液滴和 FUS-LCD 凝聚的饱和浓度。在相分离区域,我们模拟了四种不同大小的 FUS-LCD 液滴,它们与稀相处于稳定平衡,并模拟了几十微秒和超过一毫秒的凝聚 FUS-LCD 薄片。我们从液滴形状的波动和两相之间界面的类毛细波样展宽来确定表面张力在 0.01-0.4 mN/m 的范围内。从蛋白质端到端距离的动力学,我们估计剪切黏度在 0.001-0.02 Pa s 的范围内,对于标度因子α在 0.625-0.75 范围内的 FUS-LCD 液滴,我们观察到液滴。液滴内部的显著水合作用使蛋白质保持移动性并使液滴保持流体状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09d3/7872324/035fa473c74d/ct0c01064_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验