Suppr超能文献

涉及人工智能干预的临床试验报告的报告规范:CONSORT-AI 扩展。

Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension.

机构信息

Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK; Department of Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Moorfields Eye Hospital NHS Foundation Trust, London, UK; Health Data Research UK, London, UK.

Centre for Patient Reported Outcome Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK; Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK.

出版信息

Lancet Digit Health. 2020 Oct;2(10):e537-e548. doi: 10.1016/S2589-7500(20)30218-1. Epub 2020 Sep 9.

Abstract

The CONSORT 2010 statement provides minimum guidelines for reporting randomised trials. Its widespread use has been instrumental in ensuring transparency in the evaluation of new interventions. More recently, there has been a growing recognition that interventions involving artificial intelligence (AI) need to undergo rigorous, prospective evaluation to demonstrate impact on health outcomes. The CONSORT-AI (Consolidated Standards of Reporting Trials-Artificial Intelligence) extension is a new reporting guideline for clinical trials evaluating interventions with an AI component. It was developed in parallel with its companion statement for clinical trial protocols: SPIRIT-AI (Standard Protocol Items: Recommendations for Interventional Trials-Artificial Intelligence). Both guidelines were developed through a staged consensus process involving literature review and expert consultation to generate 29 candidate items, which were assessed by an international multi-stakeholder group in a two-stage Delphi survey (103 stakeholders), agreed upon in a two-day consensus meeting (31 stakeholders), and refined through a checklist pilot (34 participants). The CONSORT-AI extension includes 14 new items that were considered sufficiently important for AI interventions that they should be routinely reported in addition to the core CONSORT 2010 items. CONSORT-AI recommends that investigators provide clear descriptions of the AI intervention, including instructions and skills required for use, the setting in which the AI intervention is integrated, the handling of inputs and outputs of the AI intervention, the human-AI interaction and provision of an analysis of error cases. CONSORT-AI will help promote transparency and completeness in reporting clinical trials for AI interventions. It will assist editors and peer reviewers, as well as the general readership, to understand, interpret, and critically appraise the quality of clinical trial design and risk of bias in the reported outcomes.

摘要

CONSORT 2010 声明提供了报告随机试验的最低指南。它的广泛使用对于确保新干预措施评估的透明度起到了重要作用。最近,人们越来越认识到,涉及人工智能 (AI) 的干预措施需要经过严格的前瞻性评估,以证明其对健康结果的影响。CONSORT-AI(报告临床试验的统一标准-人工智能)扩展是评估具有 AI 组件的干预措施的临床试验的新报告指南。它与临床试验方案的配套声明 SPIRIT-AI(标准协议项目:干预试验的建议-人工智能)同时开发。这两个指南都是通过一个分阶段的共识过程制定的,涉及文献回顾和专家咨询,生成了 29 个候选项目,这些项目由一个国际多利益相关者小组在两轮德尔菲调查(103 个利益相关者)中进行评估,在为期两天的共识会议(31 个利益相关者)上达成一致,并通过清单试点(34 名参与者)进行了完善。CONSORT-AI 扩展包括 14 个新的项目,这些项目被认为对 AI 干预措施非常重要,除了核心的 CONSORT 2010 项目外,还应常规报告。CONSORT-AI 建议研究人员提供 AI 干预措施的清晰描述,包括使用说明和所需技能、AI 干预措施集成的环境、AI 干预措施的输入和输出的处理、人机交互以及提供对错误案例的分析。CONSORT-AI 将有助于提高人工智能干预临床试验报告的透明度和完整性。它将帮助编辑和同行评审人员以及一般读者理解、解释和批判性评估临床试验设计的质量和报告结果的偏倚风险。

相似文献

1
Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension.
Lancet Digit Health. 2020 Oct;2(10):e537-e548. doi: 10.1016/S2589-7500(20)30218-1. Epub 2020 Sep 9.
2
Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension.
Lancet Digit Health. 2020 Oct;2(10):e549-e560. doi: 10.1016/S2589-7500(20)30219-3. Epub 2020 Sep 9.
3
6
Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension.
Nat Med. 2020 Sep;26(9):1351-1363. doi: 10.1038/s41591-020-1037-7. Epub 2020 Sep 9.

引用本文的文献

3
Artificial intelligence in dysphagia since the 21st century: a bibliometric and visualization study.
Front Med (Lausanne). 2025 Aug 18;12:1624381. doi: 10.3389/fmed.2025.1624381. eCollection 2025.
6
A prediction model for persistent postoperative frailty in older patients undergoing elective orthopedic surgery.
Medicine (Baltimore). 2025 Aug 1;104(31):e43500. doi: 10.1097/MD.0000000000043500.
7
Artificial Intelligence in Advancing Inflammatory Bowel Disease Management: Setting New Standards.
Cancers (Basel). 2025 Jul 14;17(14):2337. doi: 10.3390/cancers17142337.
10
Proposing core competencies for physicians in using artificial intelligence tools in clinical practice.
Intern Med J. 2025 Aug;55(8):1403-1409. doi: 10.1111/imj.70112. Epub 2025 Jun 27.

本文引用的文献

1
The Effect of Image Resolution on Deep Learning in Radiography.
Radiol Artif Intell. 2020 Jan 22;2(1):e190015. doi: 10.1148/ryai.2019190015. eCollection 2020 Jan.
2
Clinical applications of continual learning machine learning.
Lancet Digit Health. 2020 Jun;2(6):e279-e281. doi: 10.1016/S2589-7500(20)30102-3.
4
Hidden Stratification Causes Clinically Meaningful Failures in Machine Learning for Medical Imaging.
Proc ACM Conf Health Inference Learn (2020). 2020 Apr;2020:151-159. doi: 10.1145/3368555.3384468.
5
An artificial intelligence decision support system for the management of type 1 diabetes.
Nat Metab. 2020 Jul;2(7):612-619. doi: 10.1038/s42255-020-0212-y. Epub 2020 Jun 1.
7
Predicting conversion to wet age-related macular degeneration using deep learning.
Nat Med. 2020 Jun;26(6):892-899. doi: 10.1038/s41591-020-0867-7. Epub 2020 May 18.
8
Preoperative CT-based Deep Learning Model for Predicting Disease-Free Survival in Patients with Lung Adenocarcinomas.
Radiology. 2020 Jul;296(1):216-224. doi: 10.1148/radiol.2020192764. Epub 2020 May 12.
9
Artificial intelligence in health care: accountability and safety.
Bull World Health Organ. 2020 Apr 1;98(4):251-256. doi: 10.2471/BLT.19.237487. Epub 2020 Feb 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验