Suppr超能文献

面向可扩展的容积、纳米尺度神经影像学数据集可重现处理框架。

Toward a scalable framework for reproducible processing of volumetric, nanoscale neuroimaging datasets.

机构信息

Research And Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD, 20723 USA.

School of Electrical & Computer Engineering, Georgia Institute of Technology, 777 Atlantic Dr. NW, Atlanta, GA, 30332 USA.

出版信息

Gigascience. 2020 Dec 21;9(12). doi: 10.1093/gigascience/giaa147.

Abstract

BACKGROUND

Emerging neuroimaging datasets (collected with imaging techniques such as electron microscopy, optical microscopy, or X-ray microtomography) describe the location and properties of neurons and their connections at unprecedented scale, promising new ways of understanding the brain. These modern imaging techniques used to interrogate the brain can quickly accumulate gigabytes to petabytes of structural brain imaging data. Unfortunately, many neuroscience laboratories lack the computational resources to work with datasets of this size: computer vision tools are often not portable or scalable, and there is considerable difficulty in reproducing results or extending methods.

RESULTS

We developed an ecosystem of neuroimaging data analysis pipelines that use open-source algorithms to create standardized modules and end-to-end optimized approaches. As exemplars we apply our tools to estimate synapse-level connectomes from electron microscopy data and cell distributions from X-ray microtomography data. To facilitate scientific discovery, we propose a generalized processing framework, which connects and extends existing open-source projects to provide large-scale data storage, reproducible algorithms, and workflow execution engines.

CONCLUSIONS

Our accessible methods and pipelines demonstrate that approaches across multiple neuroimaging experiments can be standardized and applied to diverse datasets. The techniques developed are demonstrated on neuroimaging datasets but may be applied to similar problems in other domains.

摘要

背景

新兴的神经影像学数据集(通过电子显微镜、光学显微镜或 X 射线微断层扫描等成像技术收集)以空前的规模描述了神经元及其连接的位置和特性,有望为理解大脑提供新方法。这些用于研究大脑的现代成像技术可以快速积累千兆字节到拍字节的结构脑成像数据。不幸的是,许多神经科学实验室缺乏处理此类大规模数据集的计算资源:计算机视觉工具通常不可移植或扩展,并且在重现结果或扩展方法方面存在相当大的困难。

结果

我们开发了一个神经影像学数据分析管道生态系统,该系统使用开源算法创建标准化模块和端到端优化方法。作为范例,我们应用我们的工具从电子显微镜数据估计突触级连接组,从 X 射线微断层扫描数据估计细胞分布。为了促进科学发现,我们提出了一个通用处理框架,该框架连接和扩展了现有的开源项目,以提供大规模数据存储、可重复的算法和工作流执行引擎。

结论

我们易于使用的方法和管道表明,多个神经影像学实验中的方法可以标准化并应用于各种数据集。开发的技术在神经影像学数据集上进行了演示,但也可以应用于其他领域的类似问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验