Suppr超能文献

用于慢性病管理的可穿戴及非侵入式传感技术综述。

A review of wearable and unobtrusive sensing technologies for chronic disease management.

作者信息

Guo Yao, Liu Xiangyu, Peng Shun, Jiang Xinyu, Xu Ke, Chen Chen, Wang Zeyu, Dai Chenyun, Chen Wei

机构信息

Center for Intelligent Medical Electronics, School of Information Science and Technology, Fudan University, Shanghai, 200433, China.

School of Art Design and Media, East China University of Science and Technology, Shanghai, 200237, China.

出版信息

Comput Biol Med. 2021 Feb;129:104163. doi: 10.1016/j.compbiomed.2020.104163. Epub 2020 Dec 13.

Abstract

With the rapidly increasing number of patients with chronic disease, numerous recent studies have put great efforts into achieving long-term health monitoring and patient management. Specifically, chronic diseases including cardiovascular disease, chronic respiratory disease and brain disease can threaten patients' health conditions over a long period of time, thus effecting their daily lives. Vital health parameters, such as heart rate, respiratory rate, SpO and blood pressure, are closely associated with patients’ conditions. Wearable devices and unobtrusive sensing technologies can detect such parameters in a convenient way and provide timely predictions on health condition deterioration by tracking these biomedical signals and health parameters. In this paper, we review current advancements in wearable devices and unobtrusive sensing technologies that can provides possible tools and technological supports for chronic disease management. Current challenges and future directions of related techniques are addressed accordingly.

摘要

随着慢性病患者数量的迅速增加,最近大量研究致力于实现长期健康监测和患者管理。具体而言,包括心血管疾病、慢性呼吸道疾病和脑部疾病在内的慢性病会在很长一段时间内威胁患者的健康状况,从而影响他们的日常生活。重要的健康参数,如心率、呼吸频率、血氧饱和度和血压,与患者的病情密切相关。可穿戴设备和非侵入式传感技术能够以便捷的方式检测这些参数,并通过跟踪这些生物医学信号和健康参数,对健康状况恶化提供及时预测。在本文中,我们综述了可穿戴设备和非侵入式传感技术的当前进展,这些进展可为慢性病管理提供可能的工具和技术支持。相应地,我们还讨论了相关技术当前面临的挑战和未来发展方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52d6/7733550/b234dda22f57/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验