Suppr超能文献

表型的本体论表示、分类和数据驱动计算。

Ontological representation, classification and data-driven computing of phenotypes.

机构信息

Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany.

SMITH Consortium of the German Medical Informatics Initiative, Leipzig, Germany.

出版信息

J Biomed Semantics. 2020 Dec 21;11(1):15. doi: 10.1186/s13326-020-00230-0.

Abstract

BACKGROUND

The successful determination and analysis of phenotypes plays a key role in the diagnostic process, the evaluation of risk factors and the recruitment of participants for clinical and epidemiological studies. The development of computable phenotype algorithms to solve these tasks is a challenging problem, caused by various reasons. Firstly, the term 'phenotype' has no generally agreed definition and its meaning depends on context. Secondly, the phenotypes are most commonly specified as non-computable descriptive documents. Recent attempts have shown that ontologies are a suitable way to handle phenotypes and that they can support clinical research and decision making. The SMITH Consortium is dedicated to rapidly establish an integrative medical informatics framework to provide physicians with the best available data and knowledge and enable innovative use of healthcare data for research and treatment optimisation. In the context of a methodological use case 'phenotype pipeline' (PheP), a technology to automatically generate phenotype classifications and annotations based on electronic health records (EHR) is developed. A large series of phenotype algorithms will be implemented. This implies that for each algorithm a classification scheme and its input variables have to be defined. Furthermore, a phenotype engine is required to evaluate and execute developed algorithms.

RESULTS

In this article, we present a Core Ontology of Phenotypes (COP) and the software Phenotype Manager (PhenoMan), which implements a novel ontology-based method to model, classify and compute phenotypes from already available data. Our solution includes an enhanced iterative reasoning process combining classification tasks with mathematical calculations at runtime. The ontology as well as the reasoning method were successfully evaluated with selected phenotypes including SOFA score, socio-economic status, body surface area and WHO BMI classification based on available medical data.

CONCLUSIONS

We developed a novel ontology-based method to model phenotypes of living beings with the aim of automated phenotype reasoning based on available data. This new approach can be used in clinical context, e.g., for supporting the diagnostic process, evaluating risk factors, and recruiting appropriate participants for clinical and epidemiological studies.

摘要

背景

成功确定和分析表型在诊断过程、评估风险因素以及为临床和流行病学研究招募参与者中起着关键作用。开发可计算的表型算法来解决这些任务是一个具有挑战性的问题,这是由各种原因造成的。首先,“表型”一词没有普遍认可的定义,其含义取决于上下文。其次,表型通常被指定为不可计算的描述性文档。最近的尝试表明,本体是处理表型的一种合适方法,它可以支持临床研究和决策制定。SMITH 联盟致力于快速建立一个综合医学信息学框架,为医生提供最佳的现有数据和知识,并使医疗保健数据能够创新地用于研究和治疗优化。在方法用例“表型管道”(PheP)的背景下,开发了一种基于电子健康记录(EHR)自动生成表型分类和注释的技术。将实现一系列大型表型算法。这意味着对于每个算法,都必须定义分类方案及其输入变量。此外,还需要一个表型引擎来评估和执行已开发的算法。

结果

在本文中,我们提出了一个表型核心本体(COP)和表型管理器(PhenoMan),它实现了一种基于本体的新方法,用于从已有数据中对表型进行建模、分类和计算。我们的解决方案包括一种增强的迭代推理过程,该过程将分类任务与运行时的数学计算相结合。本体以及推理方法已成功用于评估选定的表型,包括 SOFA 评分、社会经济地位、体表面积和世界卫生组织 BMI 分类,这些表型是基于可用的医疗数据。

结论

我们开发了一种新的基于本体的方法来对生物的表型进行建模,目的是基于可用数据进行自动化表型推理。这种新方法可用于临床环境,例如支持诊断过程、评估风险因素以及为临床和流行病学研究招募合适的参与者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1ea/7751121/abd14a65a612/13326_2020_230_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验