Suppr超能文献

开发一种用于下肢外骨骼的基于运动想象的实时异步混合脑机接口控制器。

Developing a Motor Imagery-Based Real-Time Asynchronous Hybrid BCI Controller for a Lower-Limb Exoskeleton.

作者信息

Choi Junhyuk, Kim Keun Tae, Jeong Ji Hyeok, Kim Laehyun, Lee Song Joo, Kim Hyungmin

机构信息

Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea.

Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea.

出版信息

Sensors (Basel). 2020 Dec 19;20(24):7309. doi: 10.3390/s20247309.

Abstract

This study aimed to develop an intuitive gait-related motor imagery (MI)-based hybrid brain-computer interface (BCI) controller for a lower-limb exoskeleton and investigate the feasibility of the controller under a practical scenario including stand-up, gait-forward, and sit-down. A filter bank common spatial pattern (FBCSP) and mutual information-based best individual feature (MIBIF) selection were used in the study to decode MI electroencephalogram (EEG) signals and extract a feature matrix as an input to the support vector machine (SVM) classifier. A successive eye-blink switch was sequentially combined with the EEG decoder in operating the lower-limb exoskeleton. Ten subjects demonstrated more than 80% accuracy in both offline (training) and online. All subjects successfully completed a gait task by wearing the lower-limb exoskeleton through the developed real-time BCI controller. The BCI controller achieved a time ratio of 1.45 compared with a manual smartwatch controller. The developed system can potentially be benefit people with neurological disorders who may have difficulties operating manual control.

摘要

本研究旨在为下肢外骨骼开发一种基于直观步态相关运动想象(MI)的混合脑机接口(BCI)控制器,并在包括站立、向前行走和坐下的实际场景中研究该控制器的可行性。研究中使用了滤波器组公共空间模式(FBCSP)和基于互信息的最佳个体特征(MIBIF)选择来解码MI脑电图(EEG)信号,并提取特征矩阵作为支持向量机(SVM)分类器的输入。在操作下肢外骨骼时,连续眨眼开关与EEG解码器依次组合。10名受试者在离线(训练)和在线状态下的准确率均超过80%。所有受试者通过佩戴下肢外骨骼,借助开发的实时BCI控制器成功完成了步态任务。与手动智能手表控制器相比,BCI控制器的时间比为1.45。所开发的系统可能会使患有神经系统疾病、可能难以进行手动控制的人受益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c39a/7766128/2c12304adcdc/sensors-20-07309-g009.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验