Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
Laboratory of Imaging Technology, Biochemistry and Biophysics Centre, NHLBI, NIH, Bethesda, MD, United States.
Magn Reson Imaging. 2021 Apr;77:57-68. doi: 10.1016/j.mri.2020.12.013. Epub 2020 Dec 29.
We propose a workflow for validating parallel transmission (pTx) radio-frequency (RF) magnetic field heating patterns using Proton-Resonance Frequency shift (PRF)-based MR thermometry. Electromagnetic (EM) and thermal simulations of a 7 T 8-channel dipole coil were done using commercially available software (Sim4Life) to assess RF heating. The fabrication method for a phantom with electrical properties matched to human tissue is also described, along with methods for its electrical and thermal characterisation. Energy was deposited to specific transmit channels, whilst acquiring 3D PRF data using a pair of interleaved RF shim transmit modes. A multi-echo readout and pre-scan stabilisation protocol were used for increased sensitivity and to correct for measurement-to-measurement instabilities. The electrical properties of the phantom were found to be within 10% of the intended values. Adoption of a 14-min stabilisation scan gave sufficient suppression of any evolving background spatial variation in the B field to achieve <0.001 °C/mm thermometry drift over 10 min of subsequent scanning. Using two RF shim transmit modes enabled full phantom coverage and combining multiple echo times enabled a 13-54% improvement in the RMSE sensitivity to temperature changes. Combining multiple echoes reduced the peak RMSE by 45% and visually reduced measurement-to-measurement instabilities. A reference fibre optic probe showed temperature deviations from the PRF-estimated temperature to be smaller than 0.5 °C. Given the importance of RF safety in pTx applications, this workflow enables accurate validation of RF heating simulations with minimal additional hardware requirements.
我们提出了一种使用基于质子共振频率偏移 (PRF) 的磁共振测温法验证平行传输 (pTx) 射频 (RF) 磁场加热模式的工作流程。使用商业可用软件 (Sim4Life) 对 7T 8 通道偶极线圈进行了电磁 (EM) 和热模拟,以评估 RF 加热。还描述了一种与人体组织电特性匹配的体模的制造方法,以及其电特性和热特性的测量方法。通过使用一对交错的 RF 匀场发射模式向特定发射通道沉积能量,同时获取 3D PRF 数据。采用多回波读出和预扫描稳定协议以提高灵敏度并校正测量间不稳定性。体模的电特性发现与预期值相差在 10%以内。采用 14 分钟的稳定扫描,足以抑制 B 场中任何不断变化的背景空间变化,从而在随后 10 分钟的扫描中实现 <0.001°C/mm 的测温漂移。采用两种 RF 匀场发射模式可以实现完整的体模覆盖,并且结合多个回波时间可以将 RMSE 对温度变化的灵敏度提高 13-54%。结合多个回波可以将峰值 RMSE 降低 45%,并且在视觉上降低了测量间的不稳定性。参考光纤探头显示 PRF 估计温度与实际温度之间的偏差小于 0.5°C。鉴于在 pTx 应用中 RF 安全性的重要性,该工作流程可在最小化额外硬件要求的情况下,对 RF 加热模拟进行准确验证。