Nutritional Improvement of Crops Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
J Biosci. 2020;45.
Genome editing (GE) technology has emerged as a multifaceted strategy that instantaneously popularised the mechanism to modify the genetic constitution of an organism. The clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated (Cas) protein-based genome editing (CRISPR/Cas) approach has huge potential for efficacious editing of genomes of numerous organisms. This framework has demonstrated to be more economical in contrast to mega-nucleases, zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) for its flexibility, versatility, and potency. The advent of sequence-specific nucleases (SSNs) allowed the precise induction of double-strand breaks (DSBs) into the genome, ensuring desired alterations through non-homologous end-joining (NHEJ) or homology-directed repair (HDR) pathways. Researchers have utilized CRISPR/Cas-mediated genome alterations across crop varieties to generate desirable characteristics for yield enhancement, enriched nutritional quality, and stressresistance. Here, we highlighted the recent progress in the area of nutritional improvement of crops via the CRISPR/Cas-based tools for fundamental plant research and crop genetic advancements. Application of this genome editing aids in unraveling the basic biology facts in plants supplemented by the incorporation of genome-wide association studies, artificial intelligence, and various bioinformatic frameworks, thereby providing futuristic model studies and their affirmations. Strategies for reducing the 'off-target' effects and the societal approval of genome-modified crops developed via this modern biotechnological approach have been reviewed.
基因组编辑 (GE) 技术已经成为一种多方面的策略,它可以瞬间改变生物体的遗传结构。基于成簇规律间隔短回文重复 (CRISPR) 和 CRISPR 相关 (Cas) 蛋白的基因组编辑 (CRISPR/Cas) 方法具有对许多生物体基因组进行有效编辑的巨大潜力。与巨型核酶、锌指核酸酶 (ZFNs) 和转录激活因子样效应物核酸酶 (TALENs) 相比,该框架具有灵活性、多功能性和高效性,因此更经济实惠。序列特异性核酸酶 (SSN) 的出现允许在基因组中精确诱导双链断裂 (DSB),通过非同源末端连接 (NHEJ) 或同源定向修复 (HDR) 途径确保所需的改变。研究人员已经利用 CRISPR/Cas 介导的基因组改变来提高作物品种的产量、改善营养品质和提高抗逆性。在这里,我们强调了通过基于 CRISPR/Cas 的工具在基础植物研究和作物遗传进展方面改善作物营养方面的最新进展。该基因组编辑的应用有助于阐明植物的基本生物学事实,并补充了全基因组关联研究、人工智能和各种生物信息学框架的应用,从而提供了未来主义的模型研究及其证实。还审查了通过这种现代生物技术方法开发的减少“脱靶”效应和社会对基因组修饰作物的认可的策略。