Suppr超能文献

基于网络的药物敏感性预测。

Network-based drug sensitivity prediction.

机构信息

Department of Computer Science, University of Central Florida, 4000 Central Florida Blvd, Orlando, FL, 32816, USA.

Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, 9211 Euclid Ave, Cleveland, OH, 44106, USA.

出版信息

BMC Med Genomics. 2020 Dec 28;13(Suppl 11):193. doi: 10.1186/s12920-020-00829-3.

Abstract

BACKGROUND

Drug sensitivity prediction and drug responsive biomarker selection on high-throughput genomic data is a critical step in drug discovery. Many computational methods have been developed to serve this purpose including several deep neural network models. However, the modular relations among genomic features have been largely ignored in these methods. To overcome this limitation, the role of the gene co-expression network on drug sensitivity prediction is investigated in this study.

METHODS

In this paper, we first introduce a network-based method to identify representative features for drug response prediction by using the gene co-expression network. Then, two graph-based neural network models are proposed and both models integrate gene network information directly into neural network for outcome prediction. Next, we present a large-scale comparative study among the proposed network-based methods, canonical prediction algorithms (i.e., Elastic Net, Random Forest, Partial Least Squares Regression, and Support Vector Regression), and deep neural network models for drug sensitivity prediction. All the source code and processed datasets in this study are available at https://github.com/compbiolabucf/drug-sensitivity-prediction .

RESULTS

In the comparison of different feature selection methods and prediction methods on a non-small cell lung cancer (NSCLC) cell line RNA-seq gene expression dataset with 50 different drug treatments, we found that (1) the network-based feature selection method improves the prediction performance compared to Pearson correlation coefficients; (2) Random Forest outperforms all the other canonical prediction algorithms and deep neural network models; (3) the proposed graph-based neural network models show better prediction performance compared to deep neural network model; (4) the prediction performance is drug dependent and it may relate to the drug's mechanism of action.

CONCLUSIONS

Network-based feature selection method and prediction models improve the performance of the drug response prediction. The relations between the genomic features are more robust and stable compared to the correlation between each individual genomic feature and the drug response in high dimension and low sample size genomic datasets.

摘要

背景

在高通量基因组数据上进行药物敏感性预测和药物响应生物标志物选择是药物发现的关键步骤。已经开发了许多计算方法来实现这一目的,包括几个深度神经网络模型。然而,这些方法在很大程度上忽略了基因组特征之间的模块关系。为了克服这一限制,本研究考察了基因共表达网络在药物敏感性预测中的作用。

方法

在本文中,我们首先介绍了一种基于网络的方法,通过使用基因共表达网络来识别用于药物反应预测的代表性特征。然后,提出了两种基于图的神经网络模型,这两种模型都直接将基因网络信息集成到神经网络中进行结果预测。接下来,我们提出了一个在基于网络的方法、典型预测算法(即弹性网络、随机森林、偏最小二乘回归和支持向量回归)和用于药物敏感性预测的深度神经网络模型之间进行的大型比较研究。本研究中的所有源代码和处理后数据集都可在 https://github.com/compbiolabucf/drug-sensitivity-prediction 上获得。

结果

在非小细胞肺癌(NSCLC)细胞系 RNA-seq 基因表达数据集上的 50 种不同药物处理的比较中,不同特征选择方法和预测方法的比较中,我们发现:(1)与 Pearson 相关系数相比,基于网络的特征选择方法提高了预测性能;(2)随机森林优于所有其他典型预测算法和深度神经网络模型;(3)所提出的基于图的神经网络模型与深度神经网络模型相比具有更好的预测性能;(4)预测性能是药物依赖性的,它可能与药物的作用机制有关。

结论

基于网络的特征选择方法和预测模型提高了药物反应预测的性能。与高维低样本量基因组数据集中每个单个基因组特征与药物反应之间的相关性相比,基因组特征之间的关系更稳健和稳定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2878/7771088/6c1edd549342/12920_2020_829_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验