Eder Stefan J, Grützmacher Philipp G, Rodríguez Ripoll Manel, Dini Daniele, Gachot Carsten
AC2T Research GmbH, Viktor-Kaplan-Straße 2/C, 2700 Wiener Neustadt, Austria.
Institute for Engineering Design and Product Development, TU Wien, Lehárgasse 6-Objekt 7, 1060 Vienna, Austria.
Materials (Basel). 2020 Dec 25;14(1):60. doi: 10.3390/ma14010060.
The microstructural evolution in the near-surface regions of a dry sliding interface has considerable influence on its tribological behavior and is driven mainly by mechanical energy and heat. In this work, we use large-scale molecular dynamics simulations to study the effect of temperature on the deformation response of FCC CuNi alloys of several compositions under various normal pressures. The microstructural evolution below the surface, marked by mechanisms spanning grain refinement, grain coarsening, twinning, and shear layer formation, is discussed in depth. The observed results are complemented by a rigorous analysis of the dislocation activity near the sliding interface. Moreover, we define key quantities corresponding to deformation mechanisms and analyze the time-independent differences between 300 K and 600 K for all simulated compositions and normal pressures. Raising the Ni content or reducing the temperature increases the energy barrier to activate dislocation activity or promote plasticity overall, thus increasing the threshold stress required for the transition to the next deformation regime. Repeated distillation of our quantitative analysis and successive elimination of spatial and time dimensions from the data allows us to produce a 3D map of the dominating deformation mechanism regimes for CuNi alloys as a function of composition, normal pressure, and homologous temperature.
干滑动界面近表面区域的微观结构演变对其摩擦学行为有相当大的影响,并且主要由机械能和热量驱动。在这项工作中,我们使用大规模分子动力学模拟来研究温度对几种成分的面心立方铜镍合金在各种法向压力下变形响应的影响。深入讨论了表面以下的微观结构演变,其特征机制包括晶粒细化、晶粒粗化、孪生和剪切层形成。通过对滑动界面附近位错活动的严格分析对观察结果进行补充。此外,我们定义了与变形机制相对应的关键量,并分析了所有模拟成分和法向压力下300K和600K之间与时间无关的差异。提高镍含量或降低温度会增加激活位错活动或总体促进塑性的能垒,从而增加过渡到下一个变形状态所需的阈值应力。通过对我们的定量分析进行反复提炼,并从数据中连续消除空间和时间维度,我们能够生成一张作为成分、法向压力和同源温度函数的铜镍合金主导变形机制区域的三维图。