Suppr超能文献

概率图元捕获概率分子网络中的生物功能。

Probabilistic graphlets capture biological function in probabilistic molecular networks.

机构信息

Barcelona Supercomputing Center, Barcelona 08034, Spain.

Universitat Politècnica de Catalunya (UPC), Barcelona 08034, Spain.

出版信息

Bioinformatics. 2020 Dec 30;36(Suppl_2):i804-i812. doi: 10.1093/bioinformatics/btaa812.

Abstract

MOTIVATION

Molecular interactions have been successfully modeled and analyzed as networks, where nodes represent molecules and edges represent the interactions between them. These networks revealed that molecules with similar local network structure also have similar biological functions. The most sensitive measures of network structure are based on graphlets. However, graphlet-based methods thus far are only applicable to unweighted networks, whereas real-world molecular networks may have weighted edges that can represent the probability of an interaction occurring in the cell. This information is commonly discarded when applying thresholds to generate unweighted networks, which may lead to information loss.

RESULTS

We introduce probabilistic graphlets as a tool for analyzing the local wiring patterns of probabilistic networks. To assess their performance compared to unweighted graphlets, we generate synthetic networks based on different well-known random network models and edge probability distributions and demonstrate that probabilistic graphlets outperform their unweighted counterparts in distinguishing network structures. Then we model different real-world molecular interaction networks as weighted graphs with probabilities as weights on edges and we analyze them with our new weighted graphlets-based methods. We show that due to their probabilistic nature, probabilistic graphlet-based methods more robustly capture biological information in these data, while simultaneously showing a higher sensitivity to identify condition-specific functions compared to their unweighted graphlet-based method counterparts.

AVAILABILITYAND IMPLEMENTATION

Our implementation of probabilistic graphlets is available at https://github.com/Serdobe/Probabilistic_Graphlets.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

分子相互作用已成功地建模和分析为网络,其中节点代表分子,边代表它们之间的相互作用。这些网络表明,具有相似局部网络结构的分子也具有相似的生物学功能。网络结构最敏感的度量基于图元。然而,迄今为止,基于图元的方法仅适用于无权重网络,而实际的分子网络可能具有权重边,可以表示细胞中相互作用发生的概率。当应用阈值生成无权重网络时,通常会丢弃此信息,这可能导致信息丢失。

结果

我们引入概率图元作为分析概率网络局部布线模式的工具。为了评估它们与无权重图元相比的性能,我们基于不同的著名随机网络模型和边概率分布生成合成网络,并证明概率图元在区分网络结构方面优于无权重图元。然后,我们将不同的真实分子相互作用网络建模为具有边概率作为权重的加权图,并使用我们新的基于加权图元的方法对其进行分析。我们表明,由于它们的概率性质,基于概率图元的方法更稳健地捕获这些数据中的生物学信息,同时与无权重图元方法相比,更灵敏地识别特定条件的功能。

可用性和实现

我们的概率图元实现可在 https://github.com/Serdobe/Probabilistic_Graphlets 上获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验