Suppr超能文献

多领域对抗特征泛化的行人再识别

Multi-Domain Adversarial Feature Generalization for Person Re-Identification.

出版信息

IEEE Trans Image Process. 2021;30:1596-1607. doi: 10.1109/TIP.2020.3046864. Epub 2021 Jan 11.

Abstract

With the assistance of sophisticated training methods applied to single labeled datasets, the performance of fully-supervised person re-identification (Person Re-ID) has been improved significantly in recent years. However, these models trained on a single dataset usually suffer from considerable performance degradation when applied to videos of a different camera network. To make Person Re-ID systems more practical and scalable, several cross-dataset domain adaptation methods have been proposed, which achieve high performance without the labeled data from the target domain. However, these approaches still require the unlabeled data of the target domain during the training process, making them impractical. A practical Person Re-ID system pre-trained on other datasets should start running immediately after deployment on a new site without having to wait until sufficient images or videos are collected and the pre-trained model is tuned. To serve this purpose, in this paper, we reformulate person re-identification as a multi-dataset domain generalization problem. We propose a multi-dataset feature generalization network (MMFA-AAE), which is capable of learning a universal domain-invariant feature representation from multiple labeled datasets and generalizing it to 'unseen' camera systems. The network is based on an adversarial auto-encoder to learn a generalized domain-invariant latent feature representation with the Maximum Mean Discrepancy (MMD) measure to align the distributions across multiple domains. Extensive experiments demonstrate the effectiveness of the proposed method. Our MMFA-AAE approach not only outperforms most of the domain generalization Person Re-ID methods, but also surpasses many state-of-the-art supervised methods and unsupervised domain adaptation methods by a large margin.

摘要

近年来,借助于应用于单一标记数据集的复杂训练方法,全监督的人员重新识别(Person Re-ID)的性能得到了显著提高。 但是,在应用于不同摄像机网络的视频时,这些基于单个数据集训练的模型通常会遭受相当大的性能下降。 为了使 Person Re-ID 系统更实用和可扩展,已经提出了几种跨数据集域自适应方法,这些方法在没有目标域的标记数据的情况下可以实现高性能。 但是,这些方法在训练过程中仍然需要目标域的未标记数据,这使得它们不切实际。 在其他数据集上预训练的实用 Person Re-ID 系统应在新站点上部署后立即开始运行,而不必等待收集到足够的图像或视频并调整预训练模型。 为此,在本文中,我们将人员重新识别重新定义为多数据集域泛化问题。 我们提出了一种多数据集特征泛化网络(MMFA-AAE),它能够从多个标记数据集中学习通用的域不变特征表示,并将其推广到“看不见”的摄像机系统。 该网络基于对抗自动编码器,使用最大均值差异(MMD)度量来学习通用的域不变潜在特征表示,以对齐多个域的分布。 大量实验证明了所提出方法的有效性。 我们的 MMFA-AAE 方法不仅优于大多数域泛化的 Person Re-ID 方法,而且还大大超过了许多最先进的监督方法和无监督域自适应方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验